functions of matrices and analytic similarity

functions of matrices and analytic similarity

ID:7288564

大小:573.56 KB

页数:71页

时间:2018-02-10

functions of matrices and analytic similarity_第1页
functions of matrices and analytic similarity_第2页
functions of matrices and analytic similarity_第3页
functions of matrices and analytic similarity_第4页
functions of matrices and analytic similarity_第5页
资源描述:

《functions of matrices and analytic similarity》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、September21,20158:8Matrices:Algebra,AnalysisandApplications-9inx6inb2108-ch03page123Chapter3FunctionsofMatricesandAnalyticSimilarity3.1ComponentsofaMatrixandFunctionsofMatricesInthischapter,weassumethatallthematricesarecomplexvalued(F=C)unlessotherwisestated.Let

2、φ(x)beapolynomial(φ∈C[x]).Thefollowingrelationsareeasilyestablishedφ(B)=Pφ(A)P−1,B=PAP−1,A,B∈Cn×n,P∈GL(C),n(3.1.1)φ(A1⊕A2)=φ(A1)⊕φ(A2).Itoftenpaystoknowtheexplicitformulaforφ(A)intermsoftheJordancanonicalformofA.Inviewof(3.1.1)itisenoughtoconsiderthecasewhereJis

3、composedofoneJordanblock.Lemma3.1.1LetJ=λ0I+H∈Cn×n,whereH=Hn.Thenforanyφ∈C[x]n−1φ(k)(λ)0kφ(J)=H.k!k=0123September21,20158:8Matrices:Algebra,AnalysisandApplications-9inx6inb2108-ch03page124124MatricesProof.ForanyφwehavetheTaylorexpansionNφ(k)(λ)0kφ(x)=(x−λ0),N=

4、max(degφ,n).k!k=0AsH=0for≥nfromtheaboveequalitywededucethelemma.UsingtheJordancanonicalformofAweobtain.Theorem3.1.2LetA∈Cn×n.AssumethattheJordancanon-icalformofAisgivenby(2.6.5).Thenforφ∈C[x]wehavemij−1(k)⊕qiφ(λi)kP−1φ(A)=Pi=1⊕j=1Hmij.(3.1.2)k!k=0Definit

5、ion3.1.3LettheassumptionsofTheorem3.1.2hold.ThenZik=Zik(A)iscalledthe(i,k)componentofAandisgivenbyZ=P(0⊕···⊕0⊕qiHk⊕0···⊕0)P−1,ikj=1mij(3.1.3)k=0,...,si−1,si=mi1,i=1,...,.Compare(3.1.2)with(3.1.3)todeducesi−1φ(j)(λ)iφ(A)=Zij.(3.1.4)j!i=1j=0Definition3.1.4LetA∈

6、Cn×nandassumethatΩ⊂Ccon-tainsspec(A).Thenforφ∈H(Ω)defineφ(A)by(3.1.4).Using(3.1.3)itiseasyverifythatthecomponentsofAsatisfyZij,i=1,...,,j=1,...,si−1,arelinearlyindependent,ZijZpq=0,ifeitheri=p,ori=pandj+q≥si,ZijZiq=Zi(j+q),forj+q≤si−1,A=PλZ+ZP−1.ii0i1i=1(3.

7、1.5)September21,20158:8Matrices:Algebra,AnalysisandApplications-9inx6inb2108-ch03page125FunctionsofMatricesandAnalyticSimilarity125ConsiderthecomponentZi(si−1).TheaboverelationsimplyAZi(si−1)=Zi(si−1)A=λiZi(si−1).(3.1.6)ThusthenonzerocolumnsofZi(s−1),Zaretheeig

8、envectorsii(si−1)ofA,Arespectivelycorrespondingtoλi.(NotethatZi(s−1)=0.)iLemma3.1.5LetA∈Cn×n.AssumethatλiisaneigenvalueofA.LetXibethegeneralizedeigenspaceofAcorresp

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。