an introduction to matrix variate stochastics

an introduction to matrix variate stochastics

ID:7285988

大小:266.24 KB

页数:17页

时间:2018-02-10

an introduction to matrix variate stochastics_第1页
an introduction to matrix variate stochastics_第2页
an introduction to matrix variate stochastics_第3页
an introduction to matrix variate stochastics_第4页
an introduction to matrix variate stochastics_第5页
资源描述:

《an introduction to matrix variate stochastics》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter10AnIntroductiontoMatrixVariateStochasticsInthischapter,weintroducethereadertomatrixvariatestochastics.ItisintendedtosetthesceneforWishartprocesses,whichwillbecoveredinthenextchapter.Webeginbyrecallingnotationandintroducingsomebasicfunctionsusedthroughoutboth

2、chapters.Thiswillbringusinapositiontodiscussmatrixvaluedrandomvari-ables,matrixvaluedstochasticprocesses,andmatrixvaluedstochasticdifferentialequations.Toillustratetheseconcepts,weapplythemtothematrixvaluedversionoftheOrnstein-Uhlenbeckprocessandamultidimensionalver

3、sionoftheMMM.ThemainreferencesforthischapterareGuptaandNagar(2000)andPfaffel(2008).10.1BasicDefinitionsandFunctionsInthissection,weÞxprimarilynotation.Definition10.1.1Weemploythefollowingnotation:•wedenotebyMm,n()thesetofallm×nmatriceswithentriesin.Ifm=n,wewriteMn(

4、)instead;•wewriteGL(p)forthegroupofallinvertiblematricesofMp();•letSpdenotethelinearsubspaceofallsymmetricmatricesofMp();•letSp+(Sp−)denotethesetofallsymmetricpositive(negative)deÞnitematricesofMp();•denotebyS+theclosureofS+inMppp(),thatisthesetofallsymmetricpos

5、itivesemideÞnitematricesofMp().ThenextdeÞnitionprovidesaone-to-onerelationshipbetweenvectorsandma-trices.J.Baldeaux,E.Platen,FunctionalsofMultidimensionalDiffusionswithApplications243toFinance,Bocconi&SpringerSeries5,DOI10.1007/978-3-319-00747-2_10,©SpringerInterna

6、tionalPublishingSwitzerland201324410AnIntroductiontoMatrixVariateStochasticsDefinition10.1.2LetA∈Mm,n()withcolumnsai∈m,i=1,...,n.DeÞnethefunctionvec:Mm,n()→mnvia⎛⎞a1⎜.⎟vec(A)=⎝..⎠.anNotethatvec(A)isalsoanelementofMmn,1().ThenextlemmaisderivedinGuptaandNagar(2000

7、).Lemma10.1.3Thefollowingpropertieshold:•forA,B∈Mm,n()itholdsthattr(AB)=vec(A)vec(B);•letA∈Mp,m(),B∈Mm,n()andC∈Mn,q().Thenwehavevec(AXB)=B⊗Avec(X).WenowrecallfromGuptaandNagar(2000)howasymmetricmatrixcanbemappedtoavector.p(p+1)Definition10.1.4LetS∈Sp.DeÞneth

8、efunctionvech:S0→2via⎛⎞S11⎜S12⎟⎜⎟⎜S22⎟⎜⎟⎜.⎟vech(S)=⎜⎜..⎟⎟,⎜S1p⎟⎜⎟⎜.⎟⎝..⎠Sppsuchthatvech(S)isavectorconsistingoftheelementsofSfromaboveand

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。