Introduction to Vector and Matrix Differentiation

Introduction to Vector and Matrix Differentiation

ID:41189965

大小:124.21 KB

页数:5页

时间:2019-08-18

Introduction to Vector and Matrix Differentiation_第1页
Introduction to Vector and Matrix Differentiation_第2页
Introduction to Vector and Matrix Differentiation_第3页
Introduction to Vector and Matrix Differentiation_第4页
Introduction to Vector and Matrix Differentiation_第5页
资源描述:

《Introduction to Vector and Matrix Differentiation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、INTRODUCTIONTOVECTORANDMATRIXDIFFERENTIATIONEconometrics2HeinoBohnNielsenSeptember21,2005hisnoteexpandsonappendixA.7inVerbeek(2004)onmatrixdifferenti-ation.WefirstpresenttheconventionsforderivativesofscalarandvectorTfunctions;thenwepresentthederivativesofanumberofspecialfunctionsparticularlyusefulinec

2、onometrics,and,finally,weapplytheideastoderivetheordinaryleastsquares(OLS)estimatorinthelinearregressionmodel.Weshouldemphasizethatthisnoteiscursoryreading;therulesforspecificfunctionsneededinthiscourseareindicatedwitha(∗).1ConventionsforScalarFunctionsLetβ=(β1,...,βk)0beak×1vectorandletf(β)=f(β1,...,

3、βk)beareal-valuedfunctionthatdependsonβ,i.e.f(·):Rk7−→Rmapsthevectorβintoasinglenumber,f(β).Thenthederivativeoff(·)withrespecttoβisdefinedas⎛⎞∂f(β)⎜∂β1⎟∂f(β)=⎜..⎟.(1)∂β⎝.⎠∂f(β)∂βk∂f(β)Thisisak×1columnvectorwithtypicalelementsgivenbythepartialderivative.∂βiSometimesthisvectorisreferredtoasthegradient.

4、Itisusefultorememberthatthederivativeofascalarfunctionwithrespecttoacolumnvectorgivesacolumnvectorastheresult1.1∂f(β)WecannotethatWooldridge(2003,p.783)doesnotfollowthisconvention,andletbea1×k∂βrowvector.1Similarly,thederivativeofascalarfunctionwithrespecttoarowvectoryieldsthe1×krowvector³´∂f(β)∂f(β

5、)∂f(β)0=∂β···∂β.∂β1k2ConventionsforVectorFunctionsNowlet⎛⎞g1(β)⎜.⎟g(β)=⎜..⎟⎝⎠gn(β)beavectorfunctiondependingonβ=(β1,...,βk)0,i.e.g(·):Rk7−→Rnmapsthek×1vectorintoan×1vector,wheregi(β)=gi(β1,...,βk),i=1,2,...,n,isareal-valuedfunction.Sinceg(·)isacolumnvectoritisnaturaltoconsiderthederivativeswithrespe

6、cttoarowvector,β0,i.e.⎛⎞∂g1(β)∂g1(β)···⎜∂β1∂βk⎟∂g(β)=⎜......⎟,(2)∂β0⎝...⎠∂gn(β)∂gn(β)···∂β1∂βkwhereeachrow,i=1,2,...,n,containsthederivativeofthescalarfunctiongi(·)withrespecttotheelementsinβ.Theresultisthereforean×kmatrixofderivativeswith∂gi(β)typicalelement(i,j)givenby.Ifthevectorfunctionisdefineda

7、sarowvector,it∂βjisnaturaltotakethederivativewithrespecttothecolumnvector,β.Wecannotethatitholdsingeneralthat0µ¶0∂(g(β))∂g(β)=,(3)∂β∂β0whichinthecaseaboveisak×nmatrix.Applyingtheconventionsin(1)and(2)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。