learning to detect vandalism in social content systems a study on wikipedia

learning to detect vandalism in social content systems a study on wikipedia

ID:7284489

大小:348.46 KB

页数:23页

时间:2018-02-10

learning to detect vandalism in social content systems  a study on wikipedia_第1页
learning to detect vandalism in social content systems  a study on wikipedia_第2页
learning to detect vandalism in social content systems  a study on wikipedia_第3页
learning to detect vandalism in social content systems  a study on wikipedia_第4页
learning to detect vandalism in social content systems  a study on wikipedia_第5页
资源描述:

《learning to detect vandalism in social content systems a study on wikipedia》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、LearningtoDetectVandalisminSocialContentSystems:AStudyonWikipediaVandalismDetectioninWikipediaSaraJavanmardi,DavidW.McDonald,RichCaruana,SholehForouzan,andCristinaV.LopesAbstractAchallengefacingusergeneratedcontentsystemsisvandalism,i.e.editsthatdamagecontentquality.Thehighvisibilityandeasy

2、accesstosocialnetworksmakesthempopulartargetsforvandals.Detectingandremovingvandalismiscrit-icalfortheseusergeneratedcontentsystems.Becausevandalismcantakemanyforms,therearemanydifferentkindsoffeaturesthatarepotentiallyusefulforde-tectingit.Thecomplexnatureofvandalism,andthelargenumberofpot

3、entialfea-tures,makevandalismdetectiondifficultandtimeconsumingforhumaneditors.Machinelearningtechniquesholdpromisefordevelopingaccurate,tunable,andmaintainablemodelsthatcanbeincorporatedintovandalismdetectiontools.Wedescribeamethodfortrainingclassifiersforvandalismdetectionthatyieldsclassi-fi

4、ersthataremoreaccurateonthePAN2010corpusthanotherspreviouslydevel-oped.Becauseofthehighturnaroundinsocialnetworksystems,itisimportantforvandalismdetectiontoolstoruninreal-time.Tothisaim,weusefeatureselectiontofindtheminimalsetoffeaturesconsistentwithhighaccuracy.Inaddition,becausesomefeature

5、saremorecostlytocomputethanothers,weusecost-sensitivefeatureselectiontoreducethetotalcomputationalcostofexecutingourmodels.Inadditiontothefeaturespreviouslyusedforspamdetection,weintroducenewfeaturesbasedonuseractionhistories.Theuserhistoryfeaturescontributesignificantlytoclassi-fierperforman

6、ce.Theapproachweuseisgeneralandcaneasilybeappliedtootherusergeneratedcontentsystems.S.Javanmardi(B)UniversityofCalifornia,IrvineDonaldBrenHall5042,Irvine,CA92697-3440,USAe-mail:sjavanma@ics.uci.eduD.W.McDonaldTheInformationSchool,UniversityofWashington,Washington,WA,USAR.CaruanaMicrosoftRes

7、earch,Redmond,WA,USAS.Forouzan·C.V.LopesBrenSchoolofInformationandComputerSciences,UniversityofCalifornia,Irvine,CA,USAT.Özyeretal.(eds.),MiningSocialNetworksandSecurityInformatics,203LectureNotesinSocialNetworks,DOI10.1007/978-94-007-6359-3_11,©Springer

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。