欢迎来到天天文库
浏览记录
ID:6992043
大小:36.00 KB
页数:11页
时间:2018-02-01
《高中圆的知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、精品文档高中圆的知识点总结椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。下面是圆的知识点总结。 高中圆的知识点总结一、教学内容:椭圆的方程高考要求:理解椭圆的标准方程和几何性质.重点:椭圆的方程与几何性质.难点:椭圆的方程与几何性质.二、知识点:1、椭圆的定义、标准方程、图形和性质定义第一定义:平面内与两个定点)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距第二定义:平面内到动点距离与到
2、定直线距离的比是常数e.(0标准方程焦点在x轴上焦点在y轴上图形焦点在x轴上2016全新精品资料-全新公文范文-全程指导写作–独家原创11/11精品文档焦点在y轴上性质焦点在x轴上范围:对称性:轴、轴、原点.顶点:,.离心率:e概念:椭圆焦距与长轴长之比定义式:范围:2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a(2)余弦定理:+-2r1r2cos(3)面积:=r1r2sin?2c
3、y0
4、(其中P()三、基础训练:1、椭圆的标准方程为,焦点坐标是,长轴长为___2____,短轴长为2、椭圆的值是__3或5__;3、两个焦点的
5、坐标分别为___;4、已知椭圆上一点P到椭圆一个焦点的距离是7,则点P到另一个焦点5、设F是椭圆的一个焦点,B1B是短轴,,则椭圆的离心率为6、方程=10,化简的结果是;满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为2016全新精品资料-全新公文范文-全程指导写作–独家原创11/11精品文档8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系顶点,顶点在椭圆 上,则10、已知点F是椭圆的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x0)是椭圆上的一个动点,则的最大值是8.【典型例题】例1、
6、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程.(2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.解:设方程为.所求方程为(3)已知三点P,(5,2),F1(-6,0),F2(6,0).设点P,F1,F2关于直线y=x的对称点分别为,求以为焦点且过点的椭圆方程.解:(1)由题意可设所求椭圆的标准方程为所以所求椭圆的标准方程为(4)求经过点M(,1)的椭圆的标准方程.解:设方程为例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)为一
7、个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程(精确到1km).2016全新精品资料-全新公文范文-全程指导写作–独家原创11/11精品文档解:建立如图所示直角坐标系,使点A、B、在轴上,则=
8、OA
9、-
10、O
11、=
12、A
13、=6371+439=6810解得=7782.5,=972.5.卫星运行的轨道方程为例3、已知定圆分析:由两圆内切,圆心距等于半径之差的绝对值根据图形,用数学符号表示此结论:上式可以变形为,又
14、因为,所以圆心M的轨迹是以P,Q为焦点的椭圆解:知圆可化为:圆心Q(3,0),设动圆圆心为,则为半径又圆M和圆Q内切,所以,即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以,故动圆圆心M的轨迹方程是:例4、已知椭圆的焦点是
15、和
16、(1)求椭圆的方程;(2)若点P在第三象限,且=120,求.选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.解:(1)由题设
17、
18、=2
19、
20、=4(2)设,则=60-由正弦定理得:由等比定理得:2016全新精品资料-全新公文范文-全程指导写作–独家原创11/11精品文档.说明:曲线上
21、的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P点横坐标先求出来,再去解三角形作答例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向轴作垂线段PP?@,求线段PP?@的中点M的轨迹(若M分PP?@之比为,求点M的轨迹)解:(1)当M是线段PP?@的中点时,设动点,则的坐标为因为点在圆心为坐标原点半径为2的圆上,所以有所以点(2)当M分PP?@之比为时,设动点,则的坐标为因为点在圆心为坐标原点半径为2的圆
22、上,所以有,例6、设向量=(1,0),=(x+m)+y=(x-m)+y
23、+
24、(I)求动点P(x,y)的轨迹方程;(II)已知点A(-1,0),设直线y=(x-2)与点P的轨迹交于
此文档下载收益归作者所有