2018届高考理科数学热点题型:函数与导数(有答案和解释)

2018届高考理科数学热点题型:函数与导数(有答案和解释)

ID:6899679

大小:32.50 KB

页数:9页

时间:2018-01-30

2018届高考理科数学热点题型:函数与导数(有答案和解释)_第1页
2018届高考理科数学热点题型:函数与导数(有答案和解释)_第2页
2018届高考理科数学热点题型:函数与导数(有答案和解释)_第3页
2018届高考理科数学热点题型:函数与导数(有答案和解释)_第4页
2018届高考理科数学热点题型:函数与导数(有答案和解释)_第5页
资源描述:

《2018届高考理科数学热点题型:函数与导数(有答案和解释)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、精品文档2018届高考理科数学热点题型:函数与导数(有答案和解释)函数与导数热点一 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f(x)=lnx+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求实数a的取值范围.解 (1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a≤0,则f′(x)>0,所以f(x)在(0

2、,+∞)上单调递增.若a>0,则当x∈0,1a时,f′(x)>0;当x∈1a,+∞时,f′(x)<0,所以f(x)在0,1a上单调递增,在1a,+∞上单调递减.综上,知当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在0,1a上单调递增,在1a,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;2016全新精品资料-全新公文范文-全程指导写作–独家原创9/9精品文档当a>0时,f(x)在x=1a处取得最大值,最大值为f1a=ln1a+a1-1a=-lna+a-1.因此f1a>2

3、a-2等价于lna+a-1<0.令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,实数a的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个

4、不能直接解出的超越型不等式时,如求解lna+a-1<0,则需要构造函数来解.【对点训练】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.解 (1)当a=2时,f(x)=(-x2+2x)ex,所以f′(x)=(-2x+2)ex+(-x2+2x)ex2016全新精品资料-全新公文范文-全程指导写作–独家原创9/9精品文档=(-x2+2)ex.令f′(x)>0,即(-x2+2)

5、ex>0,因为ex>0,所以-x2+2>0,解得-2<x<2.所以函数f(x)的单调递增区间是(-2,2).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)ex+(-x2+ax)ex=[-x2+(a-2)x+a]ex,所以[-x2+(a-2)x+a]ex≥0对x∈(-1,1)都成立.因为ex>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥x2+2xx+1=(x+1)2-1x+1=(x+1)-1x

6、+1对x∈(-1,1)都成立.令y=(x+1)-1x+1,则y′=1+1(x+1)2>0.所以y=(x+1)-1x+1在(-1,1)上单调递增,所以y<(1+1)-11+1=32.即a≥32.因此实数a的取值范围为a≥32.热点二 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.2016全新精品资料-全新公文范文-全程指导写作–独家原创9/9

7、精品文档【例2】设函数f(x)=lnx+mx,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-x3零点的个数.解 (1)由题设,当m=e时,f(x)=lnx+ex,定义域为(0,+∞),则f′(x)=x-ex2,由f′(x)=0,得x=e.∴当x∈(0,e),f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=lne+ee=2,∴f(x)的极小值为2.(2)由题设

8、g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x>0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。