第1章部分习题解答(理论力学 金尚年第二版)

第1章部分习题解答(理论力学 金尚年第二版)

ID:6882521

大小:1.96 MB

页数:24页

时间:2018-01-29

第1章部分习题解答(理论力学  金尚年第二版)_第1页
第1章部分习题解答(理论力学  金尚年第二版)_第2页
第1章部分习题解答(理论力学  金尚年第二版)_第3页
第1章部分习题解答(理论力学  金尚年第二版)_第4页
第1章部分习题解答(理论力学  金尚年第二版)_第5页
资源描述:

《第1章部分习题解答(理论力学 金尚年第二版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.XY解:设s为质点沿摆线运动时的路程,取=0时,s=0S==4a(1)设为质点所在摆线位置处切线方向与x轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m的小球做任一角度的单摆运动运动微分方程为给式两边同时乘以d对上式两边关于积分得利用初始条件时故由可解得上式可化为两边同时积分可得进一步化简可得由于上面算的过程只占整个周期的1/4故由两边分别对微分

2、可得故由于故对应的故故其中通过进一步计算可得1.5xyzp点解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为,①M为地球的质量;可知,地球表面的重力加速度g,x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加,R2=R+,此时总质量不变,仍为M,此时表面的重力加速度可求:④由④得:⑤则,半径变化后的g的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R,得⑧则当半径改变时,表面的重力加速度的变化为:。1.6y解:由题意可建立如图所示的平面极坐标系则由牛顿第二定律可知,质点的运动方程为өeteөX

3、mgB其中,1.8设质点在平面内运动的加速度的切向分量和法向分量都是常数,证明质点的轨道为对数螺线。解:设,质点的加速度的切向分量大小为,法向分量大小为。(其中、为常数)则有其中为曲率半径。由式得其中是初始位置,是初始速度大小。把式代入式得由式对式积分则得其中是初始角大小。我们把式转化为时间关于角的函数将式代入式,于是得质点的轨道方程当我们取一定的初始条件时,令。方程可以简化为即质点的轨迹为对数螺线。1.9解:(1)从A点到原长位置,此时间内为自由落体运动。根据能量守恒:,所以在原长位置时:因为加速度为g,所以,到达原长的时间为:(2)从原长位置到最低点D处,以原长

4、位置为坐标原点,向下为正方向,建立坐标轴Z。化简得:解微分方程得:因为t2=0时,z=0,所以,当时,(3)所以总时间为A,D间总距离为1-11解:(1)质点运动分为三个阶段。第一阶段为圆周运动,从释放质点到绳子张力为零;第二阶段为斜抛运动,重新下降到与圆周相交位置时有一绷绳过程,质点机械能转化为绳子内能;第三阶段为在最低点附近的摆荡运动。总体来看质点能量不守恒。(2)第一阶段,由能量守恒可得,,又,由绳子张力为零可知,第二阶段,设上升高度为h,则,联立、、可解得h=,;因此质点上升最高处为点上方处。设斜抛到达最高点时水平位移为s,则,s==;因此质点上升到最高点时

5、在过圆心竖直轴线左边处。1-12解:由自然坐标系即∴∴∴∴∴∴∴1.13.解:(1)以竖直向下为正方向,系统所受合力,,故系统动量不守恒;对O点,合力矩为零,过矩心,故力矩也为零,所以系统角动量守恒;而对系统来说,唯一做功的是重力(保守力),因此,系统能量守恒。(2)建立柱面坐标系,由动量定理得:同时有得到:(3)对于小球A,设其在水平平台最远距离o为r由动能定理得:由角动量守恒得:而得到r=3a而由初始时刻,故小球在a到3a间运动。1.14解:(1)分析系统的受力可知:重力竖直向下,支持力垂直于斜面向上,所受的合外力不为零,故系统动量不守恒;由物体的受力情况可以判

6、断系统的合外力矩不为零,故角动量也不守恒;而系统在运动过程中,除保守力外,其他力不作功,故机械能守恒,而能量一定守恒。(2)以地面为参考系,以O为原点,建立球坐标系。由质点系动量定理得:约束条件:将约束条件连续求两次导,带入上边方程,消去Z,得:(3)第三问不会做。1.15水平方向动量守恒,则有余弦定理得:可得:v=可得:u==1.16解:动量定理、角动量定理和动能定理7个方程式中仅有3个是独立的。1·17解:把A、B看作系统,由动量定理知其质心速度满足所以得由易知A、B各绕质心做半径为,的圆周运动,由初始条件得以质心C点的坐标和及杆和x轴的夹角为坐标1.18解:设

7、和碰撞后,的速度变为,的速度变为,与碰撞后,的速度变为,的速度变为由于两次碰撞时水平方向都不受外力,所以动量守恒,同时机械能守恒对和而言,则有:=+=+两式联立消去,则有=①对于和而言,同样有:=+=+由以上两式联立消去则有=②将①代入②得:=将上式对求导得由可得=即当=时最大且1.21解:由题意得m()=Fr+mg①②③由③得整理并积分可得④将之代入②可得整理并积分可得(正值舍去)由题意知,时若要质点不飞出去,则由题意知,初态时刻即时也有⑤已知初态时速度为v0,⑥联立④⑤⑥即可得1.22FNyFNFNxFNxFNyFNαθG水平方向动量守恒,所以质心水平坐标不

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。