基于logistic回归模型的人口预测分析

基于logistic回归模型的人口预测分析

ID:6634278

大小:408.84 KB

页数:21页

时间:2018-01-20

基于logistic回归模型的人口预测分析_第1页
基于logistic回归模型的人口预测分析_第2页
基于logistic回归模型的人口预测分析_第3页
基于logistic回归模型的人口预测分析_第4页
基于logistic回归模型的人口预测分析_第5页
资源描述:

《基于logistic回归模型的人口预测分析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于Logistic回归模型的人口预测分析尹东旭,李阳,马雨晨指导老师:徐慧(空军工程大学,西安XXXXXX)摘要:本文在数值微分法和最小二乘法曲线拟合的基础上对Logistic回归模型进行参数估计,预测了人口城镇化和老龄化两个影响因素以及2016-2030年我国的人口总数以及人口所能达到的最大值并对其加以检验。关键词:Logistic回归模型;数值微分;参数估计;曲线拟合;人口预测1问题重述与社会背景对于中国这样一个人口大国,人口问题始终是制约我们经济、文化等各方面发展的关键因素之一。如何使用数学模型来对我国的人口增长进行准确而有效的预测,关乎我国的人民幸福

2、,更关乎国家的发展大事。近年来中国的人口发展呈现了一些新的特点,比如老龄化进程加速,男女比例失调,以及农村人口城镇化,特别是计划生育政策的施行,这些都不同水平的影响着人口的增长,而这些因素影响着人口增长趋势预测的准确性。为此,如何综合考量各方面的因素,较为精确的刻画出人口增长趋势,是本文的主要目标。经过分析与讨论后,我们着重探讨了以下问题:1.如何从中国的实际情况和人口增长的特点出发,参考表1中的相关数据及其他材料,建立中国人口增长的数学模型;-21-2如何利用建立的数学模型对中国人口增长做出预测并加以检验。1基本假设1.预测时间内没有重大瘟疫、战争、自然灾害

3、等非正常因素影响人口发展。从图1中可以看出2003年60岁以上老人的死亡率因为SARS流行达到五年年来最大值,其余年份假设基本保持平稳。(见图1)图1(数据来源于中国统计年鉴)2.不考虑多胞胎情况。3.忽略人口统计时漏报误报现象。4.假设人口只受我国国内的出生率、死亡率和迁移因素影响,不考虑国家之间的移民。-21-1模型的分析与建立1.1logistic模型的介绍Logistic模型是1938年Verhulst—Pearl在修正非密度方程时提出来的,他认为在一定的环境中种群的增长总存在一个上限,当种群的数量逐渐向着上限上升时实际增长率就要逐渐地缩小,所以也被称

4、为Verhulst—Pearl方程。广义Logistic曲线可以模仿一些情况的人口增长(P)的S形曲线。起初阶段大致是指数增长;然后随着人口开始变得饱和,增加变慢;最后,达到成熟时增加停止,所以又叫sigmoid曲线(S型曲线)。(摘自百度文库)logistic方程即微分方程:(摘自百度百科)众所周知,人口增长呈现指数型增长,但人口是会受到环境最大容纳量、政策变化、经济发展、科技进步等的影响,因此这些影响因素都成为一种阻滞作用,而人口越接近最大值,这种阻滞作用就越大,所以,我们在数值微分和最小二乘法曲线拟合的基础上对Logistic数学模型进行了参数估计,此方

5、法对许多事物如经济、生物种群、医疗卫生的发展和预测具有很大的应用价值。只要满足指数增长的事物(S型曲线),就可以使用这种预测方法。1.2logistic模型建立首先,我们不妨设时刻t的人口总量为x(t),并将x(t)看作连续、可微的函数。记初始时刻(t=0)的人口为x0。规定人口的增长率为常数r,即单位时间内x(t)的增量等于r乘以x(t)。我们考虑t到t+∆t时间内人口的增量,则有xt+∆t-xt=rxt∆t(1)-21-令∆t→0,则得到x(t)满足如下的微分方程dxdt=rx,x0=x0(2)对人口的阻滞体现在对r的影响上,表现为r随着人口数量x的增加而

6、下降.我们不妨把人口的增长率r表示为关于人口数量x的函数r(x),显而易见r(x)为减函数,于是(2)式可写为dxdt=r(x)x,x0=x0(3)设r(x)是x的线性函数,即rx=r-sx(r>0,s>0)(4)此时r表示当人口数目比较少时(理论上设x=0)的增长率,就是假设此时的人口是不受自然资源等限制的固有增长率。我们要明确参数s的含义,可以引入最大人口环境容纳量xm,即我国在现在及未来国情下所能容纳的最大人口数量。则当x=xm时,人口达到最大,此时人口增长率为0,即增长率rxm=r-sxm=0从而得到s=rxm,于是(4)式可改写为rx=r(1-xxm

7、)(5)将(5)代入(3)得如下的Logistic模型dxdt=rx1-xxm,x0=x0(6)由分离变量法得方程(6)的通解xxm-x=cⅇrt。利用初始条件得c=x0xm-x0。把c代入通解并简化得-21-xt=xm1+xmx0-1e-rt。(7)(7)式可简写为x=xm1+ae-bt,(8)其中a=xmx0-1,b=r。从(8)式可以看出要想预测出人口数量,需求出参数xm,r或a、b的值。我们采用最小二乘法求Exm,r=i=1nxm1+xmx0-1ⅇ-rt-yi2的最小值,通过求∂E∂xm,∂E∂r并令它们等于零,利用Matlab软件进行处理可以估算xm

8、,r的值,并对解取倒数,得到1x=1x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。