新产品推销速度问题

新产品推销速度问题

ID:6611425

大小:75.63 KB

页数:7页

时间:2018-01-20

新产品推销速度问题_第1页
新产品推销速度问题_第2页
新产品推销速度问题_第3页
新产品推销速度问题_第4页
新产品推销速度问题_第5页
资源描述:

《新产品推销速度问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、新产品推销速度问题摘要现代社会科技发达,制造出一种新产品已经不是一件稀奇的事,然而一种新产品的产生往往都要经历一个推销过程才能被公众所了解,这种新产品问世后的销售问题,是经营者关心的问题,本模型讨论新产品销售速度问题。考虑到这种新产品刚刚产生,所以不被消费者所了解,经营者可以通过广告的方式来推销该产品,本模型假设经营者运用广告的方式来推销该产品。假设市场对该产品的需求量有一个上界,该产品的销售与它在市场上的销售量成正比,还与它在市场上剩余需求量成正比,所以与它们的乘积成正比,根据这个关系建立数学模型。解得模型为Logisti

2、c模型,求出该模型的解,根据该模型大略画出该模型的图,再根据该模型的性质和图的分析,来确定该产品应该什么时候生产,生产多少。从而是经营者得到较好的经济收益。通过在网上搜集的几年高压锅销售的数据,用MATLAB做的图形与建立的模型的图象性质基本相同,很好地说明了所建立的模型正确性。关键词:剩余需求量Logistic模型MATLAB一、问题重述经济学家和社会学家一直很关心新产品的推销问题。试建立一个数学模型来描述它,并由此分析出一些有用的结果以指导生产。二、问题分析由于一种新产品刚刚产生,所以不被消费者所了解,经营者可以通过广告

3、的方式来推销该产品,本模型假设经营者运用广告的方式来推销该产品。假设市场对该产品的需求量有一个上界,该产品的销售与它在市场上的销售量x成正比,还与它在市场上剩余需求量(M-x)成正比,所以与它们的乘积x(M-x)成正比,根据这个关系建立数学模型,由建立的模型知道此模型为logistic模型,由该模型的性质可以了解到,销售量小于最大需求量的一半时,销售速度是不断增大的,销售量达到最大需求量的一半时,该产品最为畅销,接着销售速度将开始下降。通过该模型的性质分析该产品应该什么时候生产,怎样生产。三、模型假设1、假设该产品都合格,短

4、期内没有毁坏等使消费者退货现象;2、假设该产品的推销方式为广告推销;3、忽略人为因素对该产品推销影响;4、假设该产品随时间连续变化;5、假设该产品的需求量有一个上界;四、符号说明1、M表示新产品在市场上需求量的一个上界;2、t表示该产品在市场上销售的时间;3、x表示在时间为t时刻已销售出的新产品的数量;4、k表示销售速度与x(M-x)的正比例系数;5、C表示不为0的任意常数;五、模型的建立与求解假设经营者运用广告的方式来推销该产品,设市场的需求量有一个上界,并记此上界为M,记时间t时刻已销售出的新产品数量为x(t),则在市场

5、上的剩余需求量为(M-x(t)),该产品的销售与它在市场上的销售量x成正比,还与它在市场上剩余需求量(M-x)成正比,所以与它们的乘积x(M-x)成正比,即。设比例系数为k,根据此关系,建立数学模型。此方程为logistic模型,解为:对x(t)求一阶导数得:对x(t)求二阶导数得:>0,即x(t)单调增加;令=0,即=0解得=M/2;当t<时,销售速度单调增加,当t>时,单调减小。根据方程,大略的画出图形如下:M/(1+C)Mt0M/22/2如图,在销售量小于最大需求量M的一半M/2时,销售速度(即曲线上的斜率)是不断增大

6、的,销售量达到最大需求量的一半时,该产品最为畅销,销售量大于最大需求量M的一半后,销售速度将逐渐下降。所以初期应采取小批量生产并加以广告宣传;经过一段时间,该产品被了解后,应该大批量生产;后期则在生产达到最大生产量的情况下,维持该生产下的规模生产,根据具体实际情况,采取在该规模下小幅度调整。这样可以取得较高的经济效果。六、模型的应用以下是在网上搜到的关于高压锅的销售量的数据:高压锅的销售量(单位:万台)年份y年份yt198143.6519881238.7519952257.781982109.8619891460.00199

7、62389.761983187.2119901624.2919972437.981984312.6719911899.0019982458.141985496.5819921989.8919992470.971986707.6519932077.7120002479.141987960.2519942167.8920012480.13根据以上数据,用MATLAB作图,得到图形如下:该图形与所建立的模型的大略画出图形的性质基本相符合。符合所建立的模型。七、参考文献[1]《数学建模及典型案例分析》作者:李志林出版社:化学工业出版

8、社[2]常微分方程(第三版)王高雄,周之铭,王寿松编著,高等教育出版社,2011年9月[3]赵静,但琦,数学建模与数学实验,高等教育出版社,2008八、附录MATLAB画图程序:>>x=1981:1:2001;>>y=[43.65109.86187.21312.67496.58707.65

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。