欢迎来到天天文库
浏览记录
ID:6592292
大小:243.00 KB
页数:7页
时间:2018-01-19
《对数函数及其性质说课稿》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《对数函数及其性质》说课稿一、教材分析本节课选自人教版高一数学(必修一)第二单元2.2.2《对数函数及其性质》第一课时。对数函数是重要的基本初等函数之一,是指数函数知识的拓展和延伸.它的教学过程,体现了“数形结合”的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨论证的思维能力有重要作用.本节课也为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。二、学情分析学生前面已经学习了指数函数,用研究指数函数的方法,进一步研究和学习对数函数的概念、图像和性质以
2、及初步应用,启发引导学生进一步完善初等函数的知识的系统性,加深对函数的思想方法的理解。教学过程中,发挥大多数学生动手能力较强的特点,让学生自己通过列表、描点、连线画对数函数图像。这样也利于对对数函数性质的理解。三、教学目标1.知识目标:让学生掌握对数函数的概念,能正确描绘对数函数的图象,掌握对数函数的性质.2.能力目标:通过对对数函数的学习,培养学生观察,思考,分析,归纳的思维能力.3.情感目标:培养学生勇于探索的精神,让学生主动融入学习.四、教学重点和难点重点:在理解对数函数定义的基础上,掌握对数函数的图象和
3、性质。难点:对数函数性质的应用。五、教法与学法说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,教师主导,学生为主体,根据这样的原则和所要完成的教学目标,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。(2)采用“从特殊到一般”、“从具体到抽象”的方法。(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。(4)多媒体演示法。说学法教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1
4、)对照比较学习法:学习对数函数,处处与指数函数相对照。(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。六、设计理念在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。通过对底数的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程
5、,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。七、教学过程设计问题与情境师生活动设计意图活动一:1、(课件演示)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%.试推算马王堆古墓的年代.看2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡的残留物,利用t=log5730P估计出土文物或古遗址的年代。t能不能看成是P的函数?2、你
6、能归纳出这类函数的一般式吗?生:回答问题1。师:组织学生计算,注意引导学生从函数的实际出发,解释两个变量之间的关系。教师提出问题,注意引导学生把解析式概括到y=logax形式。学生思考,归纳概括函数特征。通过回顾旧知识,使知识得到联系。创设问题情境,让学生从生活中发现问题,激发学生的学习兴趣。初步建立对数函数模形。活动二:归纳给出对数函数的概念思考:为什么且和吗?练一练,判断下列哪些是对数函数:师:(板书)一般地,我们把函数且叫做对数函数,其中x是自变量,定义域为。教学引导学生用对数的定义分析、回答。抽象出对数
7、函数的一般形式,让学生感受从特殊到一般的数学思维方法。让学生对指数函数的定义有更深刻的理解活动三:1、你能用描点法画出和的图象吗?2、从画出的图象中,你能发现解析式的区别在哪里?图象有什么不同和联系?生:独立画图,同学间交流。师:课堂巡视,个别辅导,展示画得较好的个别同学图象。图5—1图5—1生:个别同学尝试回答。师:引导学生发现、观察、对比底数不同对函数图象的影响。1.培养学生的动手能力;2.为下面学生探索对数函数的性质奠定基础。为对数函数的图象和性质作铺垫。活动四:1、你知道下列函数:(1),(2),, 图
8、象吗?观察并回答有什么共同点和不同点?2、你能思考并归纳出且中,当和时,两种图象的特点吗?生:独立思考,小组讨论。师:用多媒体课件展示各个函数的图象。生:观察图象讨论、交流合作,归纳出对数函数的共同性质。师:注意引导学生从函数性质去分析。通过学生讨论,培养学生交流合作能力。获得对数函数的图象和性质。明确底数a是确定对数函数的要素,渗透分类讨论思想。给出对数函数y=logax(a>0且a
此文档下载收益归作者所有