欢迎来到天天文库
浏览记录
ID:39709860
大小:44.50 KB
页数:4页
时间:2019-07-09
《对数函数及其性质说课稿资料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、对数函数及其性质(说课稿)2.2对数函数及其性质各位老师,大家好!今天我说课的内容是人教版必修(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明.一、教材分析1、教材的地位和作用函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等
2、式等提供了必要的基础知识.2、教学目标的确定及依据结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标:(1)知识与技能:进一步理解对数函数的意义,掌握对数函数的图像与性质,初步利用对数函数的图像与性质来解决简单的问题。(2)过程与方法:经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。(3)情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。3、教学重点与难点重
3、点:对数函数的意义、图像与性质.难点:对数函数性质中对于在与两种情况函数值的不同变化.二、教法分析本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,采用“从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。三、学法分析本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)类比学习:与指数函数类比学习对数函数的图像与性质.(2)探究定向性学习:
4、学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.四、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方法进行教学。五、教学过程 根据新课标我将本节课分为下列五个环节:创设情境,引入新课;探究新知,加深理解 ;讲解例题,强化应用;归纳小结,巩固双基;布置作业,提高升华。(一)创设情境,引入新课本节课我是从在指数函数一节曾经做过的一道习题入手的。这样以旧代新逐层递近,不仅使学生易懂而且还体现了指对函数间的密切关系。我的引题是这样的:引题:一个细胞由一个分裂成两个,两个分裂成四个……依此类推,(
5、1)求这样的一个细胞分裂的次数x与细胞个数y之间的函数关系式。(2)256个细胞是这个细胞经过几次分裂得到的?那么要得到1万,10万…个细胞呢?第一问学生很容易得出是指数函数:y=2x。再看第二问,通过思考学生分析出这是个已知细胞个数求分裂次数的问题即:已知y求x的问题,即:x=log2y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了方便学生理解,可以借助指数函数图像加以解释。得出x=log2y是一个函数,但它又和我们平时所见过的函数形式上不一样,我们习惯上用x来表示自变量,y来表示函数,所以可将它改
6、写成y=log2x,这样的函数称为对数函数。这便引出了本节课的课题。这样设计不仅学生容易接受而且虽然在过程中没有用反函数的概念,但却体现了求指数函数反函数的过程,这为后面学习反函数的概念做了铺垫。由于有了之前学习指数函数的基础,学生很容易就可归纳总结出:对数函数的一般形式:y=logax(a>0且a≠1),并求出定义域(0,+∞)。由于对数函数是形式定义,所以让学生记住这个形式是由为重要的,可以让学生观察解析式的特点并可归纳总结出三条:1、对数符号前系数为1;2、底数是不为0的正常数;3、真数是一个自变量x的形式。为了加深学生的记忆,我这里安排了一道辨析题:
7、判断下列函数是否为对数函数:这样学生就对对数函数的概念有了更准确的认知与理解。(二)探究新知,加强理解得到了对数函数的解析式,学生自然而然就会想到该研究它的图像了。我的想法是这样的:一方面描点法画图是学生需要熟练掌握的一类重要的画图方法,而且学生对自己画出的图像和归纳总结的知识记忆会更加深刻,所以我决定将课堂交给学生让他们自主探究,然后同学间互相讨论,并根据图像归纳出对数函数的性质。另一方面,研究对数函数图像主要是研究底数a对图像的影响,以及底数互为倒数的两个函数图像间的关系。所以我将所研究的问题分为以下3组:第一组:和第二组:和第三组:和。并且我将全班学生
8、每6人分为一组,由组长负责分配,每个学习小组要把这3
此文档下载收益归作者所有