资源描述:
《2004年考研数学一试题与答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线上与直线垂直的切线方程为__________.(2)已知,且,则=__________.(3)设为正向圆周在第一象限中的部分,则曲线积分的值为__________.(4)欧拉方程的通解为__________.(5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=__________.(6)设随机变量服从参数为的指数分布,则=__________.二、选择题(本题共8小题,每小题4分,满
2、分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)(B)(C)(D)(8)设函数连续,且则存在,使得(A)在(0,内单调增加(B)在内单调减少(C)对任意的有(D)对任意的有(9)设为正项级数,下列结论中正确的是(A)若=0,则级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则(D)若级数发散,则存在非零常数,使得(10)设为连续函数,,则等于(A)(B)(C)(D)0(11)设是3阶
3、方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为(A)(B)(C)(D)(12)设为满足的任意两个非零矩阵,则必有(A)的列向量组线性相关的行向量组线性相关(B)的列向量组线性相关的列向量组线性相关(C)的行向量组线性相关的行向量组线性相关(D)的行向量组线性相关的列向量组线性相关(13)设随机变量服从正态分布对给定的,数满足,若,则等于(A)(B)(C)(D)(14)设随机变量独立同分布,且其方差为令,则(A)(B)(C)(D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明
4、过程或演算步骤)(15)(本题满分12分)设,证明.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为问从着陆点算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分其中是曲面的上侧.(18)(本题满分11分)设有方程,其中为正整数.证明此方程存在
5、惟一正实根,并证明当时,级数收敛.(19)(本题满分12分)设是由确定的函数,求的极值点和极值.(20)(本题满分9分)设有齐次线性方程组试问取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.(22)(本题满分9分)设为随机事件,且,令求:(1)二维随机变量的概率分布.(2)和的相关系数(23)(本题满分9分)设总体的分布函数为其中未知参数为来自总体的简单随机样本,求:(1)的矩估计量.(2)的最大似然估计量.2004年考研数学试题答案与解析
6、(数学一)一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx上与直线垂直的切线方程为.【分析】本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx的导数为1可确定切点的坐标.【详解】由,得x=1,可见切点为,于是所求的切线方程为,即.【评注】本题也可先设切点为,曲线y=lnx过此切点的导数为,得,由此可知所求切线方程为,即.本题比较简单,类似例题在一般教科书上均可找到.(2)已知,且f(1)=0,则f(x)=.【分析】先求出的表达式,再积分即可.【详解】令,则,于是有,即
7、积分得.利用初始条件f(1)=0,得C=0,故所求函数为f(x)=.【评注】本题属基础题型,已知导函数求原函数一般用不定积分.(3)设为正向圆周在第一象限中的部分,则曲线积分的值为.【分析】利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分.【详解】正向圆周在第一象限中的部分,可表示为于是=【评注】本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程的通解为.【分析】欧拉方程的求解有固定方法,作变量代换化为常系数线性齐次微分方程即可.【详解】令,则,
8、,代入原方程,整理得,解此方程,得通解为【评注】本题属基础题型,也可直接套用公式,令,则欧拉方程,可化为(5)设矩阵,矩阵B满足,其中为A的伴随矩阵,E是单位矩阵,则.【分析】可先用公式进行化简【详解】已知等式两边同时右乘A,得,而,于是有,即,再两边取行列式,有,而,故所求行列式为【评注】先化简再计算是此类问题求解的特点,而题设