欢迎来到天天文库
浏览记录
ID:6299617
大小:412.00 KB
页数:15页
时间:2018-01-09
《初中函数知识点专题讲解》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、知识点1函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值
2、和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。知识点四,正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数
3、的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。15k的符号b的符号函数图像图像特征k>0b>0y0x图像经过一、二、三象限,y随x的增大而增大。b<0y0x图像经过一、三、四象限,y随x的增大而增大。K<0b>0y0x图像经过一、二、四象限,y随x的增大而减小b<0y0x图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。4、正比例函数的性质一般地,正比例
4、函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;15(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。5、一次函数的性质一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法知识点五、反比例函数1、反比例函数的概念一般地,函数(k是常数,k0)叫做反
5、比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3、反比例函数的性质反比例函数k的符号k>0k<0图像yOxyOx性质①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限
6、。在每个象限内,y①x的取值范围是x0,y的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y15随x的增大而减小。随x的增大而增大。4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。5、反比例函数中反比例系数的几何意义如下图,过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=。。知识点六、二次函数的概念和图像1、二次函数的概
7、念一般地,如果特,特别注意a不为零那么y叫做x的二次函数。叫做二次函数的一般式。2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。当抛物线与
8、x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。知识点七、二次函数的解析式二次函数的解析式有三种形式:口诀-----一般两根
此文档下载收益归作者所有