欢迎来到天天文库
浏览记录
ID:62454201
大小:2.65 MB
页数:18页
时间:2021-05-06
《北京市东城区2018-2019学年高一上学期期末考试数学试卷+Word版含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、文档北京市东城区2018-2019学年高一上学期期末检测数学试题一、选择题(本大题共10小题,共30.0分)1.已知集合,那么下列结论正确的是 A.B.C.D.【答案】D【解析】【分析】由,解得x范围,可得即可判断出结论.【详解】解:由,解得,或..可得0,1,,故选:D.【点睛】本题考查了元素与集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题.2.命题“,”的否定是 A.,B.,C.,D.,【答案】A【解析】【分析】18/18文档直接利用全称命题的否定是特称命题,写出结果即
2、可.【详解】解:因为全称命题的否定是特称命题,所以命题p:,,则为,.故选:A.【点睛】本题考查全称命题与特称命题的否定关系的应用,考查基本知识.3.下列结论成立的是A.若,则B.若,则C.若,,则D.若,,则【答案】D【解析】【分析】对赋值来排除。【详解】当,时,A结论不成立。当时,B结论不成立。当时,C结论不成立。故选:D【点睛】本题主要利用赋值法来排除,也可以利用不等式的性质来判断。4.在单位圆中,的圆心角所对的弧长为 A.B.C.D.【答案】B18/18文档【解析】【分析】根据弧长公式,
3、,代入计算即可.【详解】解:,故选:B.【点睛】本题主要考查了弧长公式,属于基础题.5.函数的零点所在区间是 A.B.C.D.【答案】C【解析】【分析】根据题意,分析可得函数为减函数,依次计算、、、的值,由函数零点判定定理分析可得答案.【详解】解:根据题意,函数,分析易得函数为减函数,且,,,,则函数的零点所在区间是;故选:C.【点睛】本题考查函数的零点判断定理,关键是熟悉函数的零点判定定理.6.,,的大小关系是 18/18文档A.B.C.D.【答案】D【解析】【分析】利用诱导公式化简后,根据
4、单调性即可判断.【详解】解:由,,,在第一象限为增函数,.故得故选:D.【点睛】本题考查了诱导公式和正弦函数的单调性的运用,比较基础.7.设,则“”是“”的 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【详解】解:由得,由得,18/18文档得.则“”是“”的必要不充分条件,故选:B.【点睛】本小题主要考查充要条件的判断.如果,则是的充分条件,是的必要条件;否则,不是的充分
5、条件,不是的必要条件.在判断具体问题时,可以采用互推的方法,进行和各一次,判断是否能被推出,由此判断是什么条件.还可以采用集合的观点来判断:小范围是大范围的充分不必要条件,大范围是小范围的充要不充分条件.如果两个范围相等,则为充要条件.如果没有包含关系,则为既不充分也不必要条件.8.若实数x,y满足,则的最大值为 A.1B.C.D.【答案】C【解析】【分析】根据,即可求出最大值.【详解】解:实数x,y满足,,,当,时取等号,故选:C.【点睛】本题考查了二次函数的性质,考查了运算和转化能力,属于基
6、础题.9.已知函数的定义域为R,当时,,当时,,当时,,则18/18文档A.B.C.1D.2【答案】A【解析】【分析】根据题意,由函数的解析式可得的值,进而分析可得,分析可得函数为周期为1的周期函数,则,类比奇函数的性质分析可得答案.【详解】解:根据题意,函数的定义域为R,且当时,,则,当时,,即,即,则函数为周期为1的周期函数;则,当时,,则有,又由,则;故选:A.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.形如,或的条件,说明的都是函数图像关于对称.形如,
7、或,或者的条件,说明的是函数是周期为的周期函数.10.已知非空集合A,B满足以下两个条件2,3,4,5,,;若,则.则有序集合对的个数为 18/18文档A.12B.13C.14D.15【答案】A【解析】【分析】对集合A的元素个数分类讨论,利用条件即可得出.【详解】解:由题意分类讨论可得:若,则3,4,5,;若,则3,4,5,;若,则3,4,5,;若,则2,4,5,;若,则2,3,5,;若,则3,4,1,;若,则3,4,5,;若,则4,5,;若,则3,5,;若,则3,4,;若,则3,5,;若,则3
8、,4,;若,则2,4,;若3,,则4,.综上可得:有序集合对的个数为12.故选:A.【点睛】本题考查了元素与集合之间的关系、集合运算、分类讨论方法,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共5小题,共20.0分)11.______.【答案】【解析】18/18文档【分析】利用诱导公式,将所求三角函数值转化为求的值即可.【详解】解:故答案为【点睛】本题考察了正弦函数诱导公式的应用,准确的选择公式,运用公式是解决本题的关键.12.函数的定义域为______.【答案】【解析
此文档下载收益归作者所有