夹逼定理知识讲解.doc

夹逼定理知识讲解.doc

ID:62378387

大小:277.00 KB

页数:5页

时间:2021-04-30

夹逼定理知识讲解.doc_第1页
夹逼定理知识讲解.doc_第2页
夹逼定理知识讲解.doc_第3页
夹逼定理知识讲解.doc_第4页
夹逼定理知识讲解.doc_第5页
资源描述:

《夹逼定理知识讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、夹逼定理__________________________________________________第六节夹逼定理无穷小的比较一.夹逼定理定理1:如果数列、及满足下列条件:(1),()。(2),。则数列的极限存在,且定理2:设函数在点的的某一去心邻域内(或时)满足条件:(1)。(2),(或,)。则存在,且((或存在,且)。注:(1)夹逼定理不仅说明了极限存在,而且给出了求极限的方法。(2)定理1中的条件(1)改为:,(),结论仍然成立。例1:求下列极限(1)(2)二.两个重要极限___________________________________________________

2、_________________________________________________(1)。(2),(,)。例2:求下列极限(1)(2)(3)例3:求下列极限(1)(2)(3)三.无穷小的比较在极限的运算法则中,我们讨论了两个基本点无穷小的和、差及乘积仍是无穷小。那末两个无穷小的商的情况又如何呢?为此讨论下列极限。尽管都是时的无穷小量,但是它们趋向于零的快慢程度不一样。设,是当时的两个无穷小量,由极限的运算法则知:,,都是当时的无穷小量。但当时是否是无穷小量呢?_________________________________________________________

3、___________________________________________,,,当时都是无穷小量,,,,。1.定义:设,,(1)如果,就说是比高阶的无穷小,记作;(2)如果,就说是比低阶的无穷小;(3)如果,就说是与同阶的无穷小;(4)如果,就说与是等价无穷小,记作。2.等价无穷小的重要性质定理3:设,,且存在,则=。推论(1):设,,且存在,则存在,且=。注:在计算极限的过程中,可将分子或分母的的乘积因子换为与其等价的无穷小,这种替换有时可简化计算,但注意在加、减运算中不能用。例4:求下列极限_________________________________________

4、___________________________________________________________(1)(2)例5:当时,试比较下列无穷小的阶(1)(2)3.常用的等价无穷小替换:,,,,,;,。上一节下一节返回__________________________________________________

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。