欢迎来到天天文库
浏览记录
ID:62248925
大小:44.91 KB
页数:3页
时间:2021-04-22
《截长补短专题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、截长补短法人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.例1.已知,如图1-1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.AD证明:过点D作DE垂直BA的延长线于点E,
2、作DF⊥BC于点F,如图BC图1-11-2∵BD平分∠ABC,∴DE=DF,在Rt△ADE与Rt△CDF中,DEDFADCDEAD∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF.又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,B即∠BAD+∠BCD=180°例2.如图2-1,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB.求证:CD=AD+BC.分析:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化
3、问题的目的.证明:在CD上截取CF=BC,如图2-2图A1-2EADFCDC在△FCE与△BCE中,CFCBB4图2-13FFCEBCECECE∴△FCE≌△BCE(SAS),∴∠2=∠1.又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,E21CB图2-2FDEADEDEDE34∴△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC.例3.已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,A
4、B+BC=2BD.求证:∠BAP+∠BCP=180°.分析:与例1相类似,证两个角的和是AN180°,可把它们移到一P起,让它们是邻补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造.证明:过点P作PE垂直BA的延长线于点E,如图3-212BDC图3-1∵∠1=∠2,且PD⊥BC,∴PE=PD,在Rt△BPE与Rt△BPD中,PEPDBPBP∴Rt△BPE≌Rt△BPD(HL),∴BE=BD.∵AB+BC=2BD,∴AB+BD+DC=BD+BE,∴AB+DC=BE即DC=BE-AB=AE.在Rt△APE与Rt△CPD中,PEPD
5、EANPPEAPDCAEDC∴Rt△APE≌Rt△CPD(SAS),∴∠PAE=∠PCD又∵∠BAP+∠PAE=180°,∴∠BAP+∠BCP=180°例4.已知:如图4-1,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC.证明:方法一(补短法)延长AC到E,使DC=CE,则∠CDE=∠CED,如图4-2∴∠ACB=2∠E,∵∠ACB=2∠B,∴∠B=∠E,在△ABD与△AED中,12BDC图3-2A12BADC12图4-112
6、BEADAD∴△ABD≌△AED(AAS),∴AB=AE.又AE=AC+CE=AC+DC,∴AB=AC+DC.方法二(截长法)在AB上截取AF=AC,如图4-3在△AFD与△ACD中,AFAC12ADADBDC图4-2EA12F∴△AFD≌△ACD(SAS),∴DF=DC,∠AFD=∠ACD.又∵∠ACB=2∠B,∴∠FDB=∠B,∴FD=FB.BDC图4-3∵AB=AF+FB=AC+FD,∴AB=AC+CD.上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。让掌握学生掌握好“截长补短法”对于更好的理解数学中的化归思想
7、有较大的帮助。
此文档下载收益归作者所有