截长补短专题

截长补短专题

ID:20758836

大小:48.50 KB

页数:3页

时间:2018-10-15

截长补短专题_第1页
截长补短专题_第2页
截长补短专题_第3页
资源描述:

《截长补短专题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、截长补短法图1-1人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.例1.已知,如图1-1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.证明:过点D作DE垂直BA的延长线于点

2、E,作DF⊥BC于点F,如图1-2图1-2∵BD平分∠ABC,∴DE=DF,在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF.图2-1又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,即∠BAD+∠BCD=180°例2.如图2-1,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB.求证:CD=AD+BC.图2-2分析:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目

3、的.证明:在CD上截取CF=BC,如图2-2在△FCE与△BCE中,∴△FCE≌△BCE(SAS),∴∠2=∠1.又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC.例1.已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.求证:∠BAP+∠BCP=180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻

4、补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造.图3-1证明:过点P作PE垂直BA的延长线于点E,如图3-2∵∠1=∠2,且PD⊥BC,∴PE=PD,在Rt△BPE与Rt△BPD中,图3-2∴Rt△BPE≌Rt△BPD(HL),∴BE=BD.∵AB+BC=2BD,∴AB+BD+DC=BD+BE,∴AB+DC=BE即DC=BE-AB=AE.在Rt△APE与Rt△CPD中,∴Rt△APE≌Rt△CPD(SAS),∴∠PAE=∠PCD又∵∠BAP+∠PAE=180°,∴∠BAP+∠BCP=180°图4-1例2.已知:如图4-1,在△

5、ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC.证明:方法一(补短法)图4-2延长AC到E,使DC=CE,则∠CDE=∠CED,如图4-2∴∠ACB=2∠E,∵∠ACB=2∠B,∴∠B=∠E,在△ABD与△AED中,∴△ABD≌△AED(AAS),∴AB=AE.又AE=AC+CE=AC+DC,∴AB=AC+DC.方法二(截长法)图4-3在AB上截取AF=AC,如图4-3在△AFD与△ACD中,∴△AFD≌△ACD(SAS),∴DF=

6、DC,∠AFD=∠ACD.又∵∠ACB=2∠B,∴∠FDB=∠B,∴FD=FB.∵AB=AF+FB=AC+FD,∴AB=AC+CD.上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。让掌握学生掌握好“截长补短法”对于更好的理解数学中的化归思想有较大的帮助。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。