欢迎来到天天文库
浏览记录
ID:62163553
大小:2.58 MB
页数:48页
时间:2020-02-26
《第七章 立体的相贯线.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第七章两立体相交[Intersectionoftwosolids]§7-1平面立体与平面立体相贯§7-2平面立体与曲面立体相贯§7-3曲面立体与曲面立体相贯基本要求基本要求§7-1平面立体与平面立体相贯[Intersectionoftwosolidsconsistingofflatintersectingplanes]一、概述二、例题1例题2例题3例题4例题51.相贯线的性质相贯线是两立体表面的共有线,相贯线上的点是两立体表面的共有点;不同的立体以及不同的相贯位置,相贯线的形状也不同;2.相贯线的形状两平面立体的相贯线由折线组成。折线的每一段都是甲形体的一个侧面与乙形体的一个侧面的交线,
2、折线的转折点就是一个形体的侧棱与另一形体的侧面的交点。3.求相贯线的方法求两平面立体相贯线的方法通常有两种:一种是求各侧棱对另一形体表面的交点,然后把位于甲形体同一侧面又位于乙形体同一侧面上的两点,依次连接起来。另一种是求一形体各侧面与另一形体各侧面的交线。4.判别相贯线可见性的原则只有位于两形体都可见的侧面上的交线,是可见的。只要有一个侧面不可见,面上的交线就不可见。一、概述[Introduction][例题1]两平面立体相贯,完成相贯线的投影1"yyyy14"44'233'2'1'3"2"解题步骤1.分析相贯线的正面投影已知,水平投影和侧面投影未知;2.求出相贯线上的折点Ⅰ、Ⅱ、Ⅲ、
3、Ⅳ;3.顺次地连接各点,作出相贯线,并且判别可见性;4.整理轮廓线。[例题2]两平面立体相贯,完成相贯线的投影解题步骤1.分析相贯线为一组闭合折线,相贯线的正面投影未知,水平投影已知;相贯线的投影前后、左右对称。2.求出相贯线上的折点Ⅰ、Ⅱ、Ⅲ等;3.顺次地连接各点,作出相贯线,并且判别可见性;4.整理轮廓线。2'1'1233'观看动画§7-2平面立体与曲面立体相贯[Intersectionofsolidsconsistingofflatintersectingplanesandsolidconsistingofcurvedsurfaces]一、概述二、例题1例题2例题3例题4例题5一、
4、概述[Introduction][例题1]平面立体与曲面立体相贯,完成相贯线的投影解题步骤1.分析相贯线为三段圆弧的组合;相贯线的水平投影已知,可利用表面取点法求共有点;2.求出相贯线上的特殊点Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ;3.求出若干个一般点Ⅷ、Ⅸ;4.光滑且顺次地连接各点,作出相贯线,并且判别可见性;5.整理轮廓线。THSHPH35QH123'9'8'6'7'1'2'4'5'46789观看动画[例题2]平面立体与曲面立体相贯,完成相贯线的投影解题步骤1.分析相贯线为圆弧和双曲线的组合;相贯线的侧面投影已知,可利用表面取点法求共有点;2.求出相贯线上的特殊点Ⅰ、Ⅱ、Ⅳ;3.求出一般点Ⅲ;
5、4.光滑且顺次地连接各点,作出相贯线,并且判别可见性;5.整理轮廓线。观看动画[例题3]求柱头交线相贯线的主要性质其作图实质是找出相贯的两立体表面的若干共有点的投影1)共有性2)分界性相贯线两立体表面的分界线相贯线是两立体表面的共有线3)封闭性相贯线一般是封闭的空间曲线,特殊情况下为平面曲线或直线§7-3曲面立体体的相贯线intersectionofsolidsconsistingofcurvedsurfaces两立体相交可分为:1)两平面立体相交:可归结为求两平面的交线问题,或求棱线与平面的交点问题2)平面与曲面立体相交:可归结为求平面与曲面立体截交线问题本节主要介绍此问题3)曲面立体
6、相贯线3.1利用积聚性求相贯线例1:轴线垂直相交的两圆柱,试求其相贯线。相贯线的侧面投影积聚在水平大圆柱侧面投影上,即为圆的一部分。●●●●●●●●●空间及投影分析:相贯线的水平投影与直立小圆柱的水平投影重合,是一个圆。求相贯线的投影:利用积聚性,采用表面取点法。1.找全特殊点2.补充一般点3.判别可见性光滑连接4.补全轮廓线曲面立体相贯的三种基本形式[Threebasictypesofintersectionofsolidsconsistingofcurvedsurfaces]2.外表面与内表面相交;1.两外表面相交;3.两内表面相交。以下分别是圆柱外表面与圆柱内表面相贯、圆柱内表面与
7、圆柱内表面相贯的情况以下分别是圆柱外表面与圆柱内表面相贯、圆柱内表面与圆柱内表面相贯的情况3.2用辅助平面法求相贯线辅助平面法:根据三面共点的原理,利用辅助平面求出两回转体表面上的若干共有点,从而画出相贯线的投影。作图方法:假想用辅助平面截切两回转体,分别得出两回转体表面的截交线。由于截交线的交点既在辅助平面内,又在两回转体表面上,因而是相贯线上的点。辅助平面的选择原则:使辅助平面与两回转体表面截交线的投影简单易画,例如直线或圆。一
此文档下载收益归作者所有