最新数据仓库和OLAP系统中的安全问题课件ppt.ppt

最新数据仓库和OLAP系统中的安全问题课件ppt.ppt

ID:62137496

大小:1.08 MB

页数:83页

时间:2021-04-18

最新数据仓库和OLAP系统中的安全问题课件ppt.ppt_第1页
最新数据仓库和OLAP系统中的安全问题课件ppt.ppt_第2页
最新数据仓库和OLAP系统中的安全问题课件ppt.ppt_第3页
最新数据仓库和OLAP系统中的安全问题课件ppt.ppt_第4页
最新数据仓库和OLAP系统中的安全问题课件ppt.ppt_第5页
资源描述:

《最新数据仓库和OLAP系统中的安全问题课件ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数据仓库和OLAP系统中的安全问题数据仓库的定义数据仓库理论的创始人W.H.Inmon在其《BuildingtheDataWarehouse》一书中,给出了数据仓库的四个基本特征:面向主题,数据是集成的,数据是不可更新的,数据是随时间不断变化的。基本概念数据仓库定义数据仓库是一个面向决策主题的、集成的、时变的、非易失、以读为主的数据集合。数据仓库系统的分类Web数据仓库;并行数据仓库;多维数据仓库;压缩数据仓库等。OLAP定义OLAP是针对某个特定的主题进行联机数据访问、处理和分析,通过直观的方式从多个维度、多种数据综合程度将系统的运营

2、情况展现给用户。数据仓库中的几个重要概念ETLETL(Extract/Transformation/Load)—用户从数据源抽取出所需的数据,经过数据清洗、转换,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。元数据关于数据的数据,指在数据仓库建设过程中所产生的有关数据源定义、目标定义、转换规则等相关的关键数据。同时元数据还包含关于数据含义的商业信息。DataMart数据集市--小型的,面向部门或工作组级数据仓库。OperationDataStore操作数据存储—ODS是能支持企业日常的全局应用的数据集合,是不同于DB的一种

3、新的数据环境,是DW扩展后得到的一个混合形式。四个基本特点:面向主题的(Subject-Oriented)、集成的、可变的、当前或接近当前的。粒度数据仓库的数据单元中保存数据的细化或综合程度的级别。细化程度越高,粒度级就越小;相反,细化程度越低,粒度级就越大。分割结构相同的数据可以被分成多个数据物理单元。任何给定的数据单元属于且仅属于一个分割。数据仓库中的几个重要概念(续)操作数据库与数据仓库的区别操作数据库系统的主要任务是联机事务处理OLTP数据仓库在数据分析和决策方面为用户提供服务,这种系统称为联机分析处理OLAP操作型数据分析型数

4、据细节的综合的,或提炼的在存取瞬间是准确的代表过去的数据可更新不更新操作需求事先可知道操作需求事先不知道生命周期符合SDLC完全不同的生命周期对性能要求高对性能要求宽松一个时刻操作一个单元一个时刻操作一个集合事物驱动分析驱动面向应用面向分析一次操作数据量小一次操作数据量大支持日常操作支持管理需求采购子系统:订单(订单号,供应商号,商品号,类别,单价。数量,总金额,日期,…)供应商(供应商号,供应商名,地址,电话,…)销售子系统:客户(客户号,姓名,地址,电话,…)销售(客户号,商品号,数量,单价,日期,…)库存子系统:进库单(编号,商品

5、号,数量,单价,日期,…)出库单(编号,商品号,数量,单价,日期,…)库存(商品号,库房号,类别,单价,库存数量,总金额,日期,…)商品固有信息:商品号,类别,单价,颜色,…商品采购信息:商品号,类别,供应商号,供应日期,单价,数量,…商品销售信息:商品号,客户号,数量,单价,销售日期,…商品库存信息:商品号,库房号,库存数量,日期,…)商品主题域:采购子系统销售子系统库存子系统3、数据仓库中的数据组织数据仓库中的数据分为四个级别:早期细节级,当前细节级,轻度综合级,高度综合级。1985~1998年销售明细表1998~2003年销售明细

6、表1998~2003年每月销售表1998~2003年每季度销售表DW中还有一类重要的数据:元数据(metedata)。元数据是“关于数据的数据”(RDBMS中的数据字典就是一种元数据)。数据仓库中的元数据描述了数据的结构、内容、索引、码、数据转换规则、粒度定义等。4、数据仓库系统结构RDBMS数据文件其他综合数据当前数据历史数据元数据抽取、转换、装载数据仓库OLAP工具DM工具查询工具分析工具二、数据仓库设计数据仓库的设计分为如下三个阶段:数据仓库建模分析主题域确定粒度层次确定数据分割策略构建数据仓库数据的存储结构与存储策略DSS应用编

7、程三、操作数据存储(ODS)在许多情况下,DB-DW的两层体系结构并不适合企业的数据处理要求。因为,虽然可以粗略地把数据处理分成操作型和分析型,但这两种处理处理并不是泾渭分明的。ODS(OperationalDataStore)作为一个中间层次,一方面,它包含企业全局一致的、细节的、当前的或接近当前的数据,另一方面,它又是一个面向主题、集成的数据环境,适合完成日常决策的分析处理。四、数据仓库的实现数据仓库的工具主要有:数据预处理工具,数据分析(OLAP)工具,数据挖掘工具,OLAP服务器。数据仓库和OLAP工具基于多维数据模型(在数据仓

8、库中,通常以多维方式来存储数据。)。基本概念维:人们观察数据的特定角度。维的层次:人们观察数据的特定角度可能存在细节程度不同的多个描述方面,我们称其为维的层次。多维分析的基本动作切片,旋转,上卷,下钻。Sa

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。