最新二次函数与一元二次方程ppt课件.ppt

最新二次函数与一元二次方程ppt课件.ppt

ID:62094979

大小:1.70 MB

页数:51页

时间:2021-04-16

最新二次函数与一元二次方程ppt课件.ppt_第1页
最新二次函数与一元二次方程ppt课件.ppt_第2页
最新二次函数与一元二次方程ppt课件.ppt_第3页
最新二次函数与一元二次方程ppt课件.ppt_第4页
最新二次函数与一元二次方程ppt课件.ppt_第5页
资源描述:

《最新二次函数与一元二次方程ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数与一元二次方程学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.导入新课情境引入问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,t2-4t=0,t1=0

2、,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值且a≠0时,二次函数为一元二次方程.如:y=5时,则5=

3、ax2+bx+c就是一个一元二次方程.为一个常数(定值)所以二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.利用二次函数深入讨论一元二次方程二思考观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2

4、;(2)y=x2-6x+9;(3)y=x2-x+1.1xyOy=x2-6x+9y=x2-x+1y=x2+x-2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相应的一元二次方程的根y=x2-x+1y=x2-6x+9y=x2+x-20个1个2个x2-x+1=0无解0x2-6x+9=0,x1=x2=3-2,1x2+x-2=0,x1=-2,x2=1知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有两个重合的交点有两个相等

5、的实数根b2-4ac=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(1)证明:∵m≠0,∴Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;(3)球的飞行高度能否达到20.5m?如果

6、能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,x2=.当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(

7、1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.变式:已知:抛物线y=x2+ax+a-2.(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)解:∵x1+x2=-a,x1·x2=a-

8、2,∴x1(2)+x2(2)=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.例2如图,丁丁在扔铅球时,铅球沿抛物线运行,其中x是铅球离初始位置的水平距离,y是铅球离地面的高度.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(3)铅球离地面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。