资源描述:
《竖直平面内的圆周运动及实例分析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、个人收集整理勿做商业用途竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的
2、向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当
3、时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。个人收集整理勿做商业用途 过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。质点能在竖直平面内做圆周运动(轻绳或轻杆)最高点的向心力最低点的向心力,由机械能守恒,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。 二、可化为
4、这两类模型的圆周运动竖直平面内的圆周运动一般可以划分为这两类,竖直(光滑)圆弧内侧的圆周运动,水流星的运动,过山车运动等,可化为竖直平面内轻绳类圆周运动;汽车过凸形拱桥,小球在竖直平面内的(光滑)圆环内运动,小球套在竖直圆环上的运动等,可化为轻竖直平面内轻杆类圆周运动。 三、水流星运动中过最高点的速度和水不流出速度的区别 水流星是一种杂技表演,表演者在两个碗里装上水,用绳子系住碗,然后在竖直平面内舞动,碗中的水和碗一起作圆周运动,水不从碗中流出来。水流星在竖直平面内作圆周运动过最高点的临界条件是满足轻绳类圆周运动,很多参考书就把这个速度当作是水不流出的最小速度
5、,其实这种理解是不正确的。我们不能把这当作是水不流出的条件,这是因为当不但水不能做圆周运动,碗也不能做圆周运动,即是,当碗运动到最高点之前就做斜抛运动了,碗中的水也随之作斜抛运动,在斜抛运动中,水和碗都处于完全失重状态,水也不从碗中流出。所以不能把当作是水不流出的条件。四、例子讲解 例1(07年全国2)如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。求物
6、块初始位置相对于圆形轨道底部的高度h的取值范围。个人收集整理勿做商业用途 解:设物块在圆形轨道最高点的速度为v,由机械能守恒定律得 mgh=2mgR+mv2 ①物块在最高点受的力为重力mg、轨道的压力N。重力与压力的合力提供向心力,有 mg+N=m ② 物块能通过最高点的条件是N≥0 ③由②③式得V≥ ④由①④式得 H≥2.5R ⑤ 按题的需求,N=5mg,由②式得 V< ⑥ 由①⑥式得 h≤5R ⑦ h的取值范围是2.5R≤h≤5R
7、 例2如图所示光滑管形圆轨道半径为R(管径远小于R)固定,小球a、b大小相同,质量相同,均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是( )个人收集整理勿做商业用途 A.速度v至少为,才能使两球在管内做圆周运动 B.当v=时,小球b在轨道最高点对轨道无压力C.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg D.只要v≥,小球a对轨道最低点压力比小球b对轨道最高点压力都大6mg 解:内管可以对小球提供支持力,可化为轻杆模型,在最高点时,小球速
8、度可以为零,由机械能守恒