欢迎来到天天文库
浏览记录
ID:61982016
大小:5.36 MB
页数:33页
时间:2021-04-08
《专题2.11 已知不等恒成立,分离参数定最值-2020届高考数学压轴题讲义(解答题)(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【题型综述】不等式恒成立的转化策略一般有以下几种:①分离参数+函数最值;②直接化为最值+分类讨论;③缩小范围+证明不等式;④分离函数+数形结合。分类参数的优势在于所得函数不含参数,缺点在于函数结构复杂,一般是函数的积与商,因为结构复杂,导函数可能也是超越函数,则需要多次求导,也有可能不存在最值,故需要求极限,会用到传说中的洛必达法则求极限(超出教学大纲要求);直接化为最值的优点是函数结构简单,是不等式恒成立的同性通法,高考参考答案一般都是以这种解法给出,缺点是一般需要分类讨论,解题过程较长,解题层级数较多,不易掌握分类标准。缩小参数范围优点是
2、函数结构简单,分类范围较小,分类情况较少,难点在于寻找特殊值,并且这种解法并不流行,容易被误判。分离函数主要针对选择填空题。因为图形难以从微观层面解释清楚图像的交点以及图像的高低,这要涉及到图像的连续性以及凸凹性。还有在构作函数图像时,实际上是从特殊到一般,由特殊几点到整个函数图像,实际是一种猜测。俗话说,形缺数时难入微。【典例指引】例1己知函数.(1)若函数在处取得极值,且,求;(2)若,且函数在上单调递増,求的取值范围.法二(直接化为最值+分类讨论):令,.令,①当时,,所以,即在上单调递减.而,与在上恒成立相矛盾.②当时,则开口向上(方
3、案一):Ⅰ.若,即时,,即,所以在上递增,所以,即.Ⅱ.若,即时,此时,不合题意.[来源:Zxxk.Com]法三(缩小范围+证明不等式):令,则.另一方面,当时,则有,令,开口向上,对称轴,故在上为增函数,所以在上为增函数,则,故适合题意.学科&网例2.(2016全国新课标Ⅱ文20)己知函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.法二(直接化为最值):在恒成立,则(导函数为超越函数);在为增函数,则(1)当即时,则(当且仅当时,取“”),故在为增函数,则有,故在恒成立,故适合题意.(2)当即时,则,且,故在有唯一实根
4、,则在为减函数,在增函数,又有,则存在,使得,故不适合题意.综上,实数的取值范围为.学科&网法三(分离参数):在恒成立在恒成立(端点自动成立),则设,令在为增函数,则在为增函数,又因,故实数的取值范围为法四(缩小范围):在恒成立,且,则存在,使得在上为增函数在上恒成立,令.又当时,在为增函数,则(当且仅当(当且仅当时,取“”),故在为增函数,则有,故在恒成立,故适合题意.综上,实数的取值范围为.学科&网点评:当端点刚好适合题意时,则分离参数法一般会用到传说中的洛必达法则,缩小范围则可利用端点值导数符号来求出参数范围。这两种转化方式都有超出教学
5、大纲要求的嫌疑。2.(重庆市2015届一诊理20)已知曲线在点处的切线的斜率为1;(1)若函数在上为减函数,求的取值范围;(2)当时,不等式恒成立,求的取值范围.当时,在上单减,上单增,而,矛盾;综上,.法二(分离参数)在上恒成立(端点自动成立)设,令[来源:学科网ZXXK]在上为减函数,则在上为减函数,又因,故实数的取值范围为(2)若时,则,故在上单减,上单增,而,矛盾;学科&网综上,实数的取值范围为点评:(1)在端点处恰好适合题意,分离参数所得函数却在时得到下确界,值得留意.(2)缩小范围所得参数范围不一定恰好具有充分性,则需要分类讨论,
6、这时可以减少分类的层级数,缩短解题步骤。(3)构造反例,寻找合适的特殊值,具有很强的技巧性。因函数分解为二次函数与对数函数之和,故构造特殊值的反例时可以分别考虑二次函数与对数函数的零点,对数函数的零点为,而二次函数的零点为及,又知当时,零点,故易得,从而导出矛盾。【扩展链接】洛必达法则简介:法则1若函数和满足下列条件:(1)及;(2)在点的去心邻域内,与可导,且;(3),那么.法则2若函数和满足下列条件:(1)及;(2),和在与上可导,且;(3),那么.法则3若函数和满足下列条件:(1)及;(2)在点的去心邻域内,与可导且;(3),那么.利用
7、洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①将上面公式中的换成洛必达法则也成立。②洛必达法则可处理型。③在着手求极限以前,首先要检查是否满足型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。④若条件符合,洛必达法则可连续多次使用,直到求出极限为止。【新题展示】1.【2019江西上饶联考】已知函数.当时,求函数的单调增区间;若函数在上是增函数,求实数a的取值范围;若,且对任意,,,都有,求实数a的最小值.【思路引导】把代入函数解析式,求其导函数,由导函数
8、大于0求函数的单调增区间;求原函数的导函数,由函数在上是增函数,说明其导函数在上大于等于0恒成立,在导函数中x与恒大于0,只需对恒成立,则a可求;由知,当时在上是增
此文档下载收益归作者所有