欢迎来到天天文库
浏览记录
ID:61967420
大小:37.50 KB
页数:3页
时间:2020-02-26
《转变教师教育观念发挥学生主体作用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、转变教师教育观念发挥学生主体作用在课堂教学活动过程中,学生是活动的主体,教师在活动过程中起引导作用。现代教学不再是老师单纯地教学知识,勉强地灌输知识,而应是教师教给学生主动学习的能力、主动学习的方法和主动进取的意识。只有这样,才能把“要我学习”变成“我要学习”,学生的主动意识才会增强,培养出的学生才能适应社会的发展,才能更好为社会发展做贡献。因此,要转变教师教育观念,教学中培养学生的主体意识,发挥学生的主体作用就成为现代教学中最重要的内容。那么,怎样才能发挥学生的主体作用,培养他们的主体进取意识呢?当然有许多方面可以做,例如对教材的灵活处理,利用现代先进的教学手段,各种
2、教学方法的灵活运用等都是体现发挥学生主体作用途径。但是在这些方法、手段,最重要的是教师的教育观念应先转变。教学是双边活动的过程,学生的学是在教师的引导下完成的。如何学,也只有教师来控制和掌握,不能让学生信马由缰,漫无目的,搞得偏离整节课的教学目标。能不能发挥学生的主体作用,教师起着决定性的作用。要想培养出有主体意识的学生,使他们积极进取、主动求知,发挥他们学习的主体作用,需要教师做到以下几点:一、相信学生培养学生主动性大纲指出:学生是教学活动的主体。教师应成为教学活动的组织者、指导者、参与者。教师应时时把自己摆在一个非主体的引导者位置上,不要什么知识都自己包办,要相信学
3、生自己有能力去化解知识。在具体知识更新讲解时,应担当起组织者的角色,引导学生自己说。例:在教学“笔算三位数乘两位数”这一节内容时,我就放手让学生带着如下两个问题自己看书。1、看完题目你知道了什么?2、题目中的问题是什么?看完书后,第一位学生举手回答:“知道了李叔叔从某城市乘火车去北京用了12小时,火车1小时行145千米。”问题是:“该城市到北京有多少千米?”马上就有人争着还要说:“知道了时间和速度”,问题是“求路程”。我接着问:“这位同学说得很好,能说出分别是多少吗?”学生补充:“知道时间是12小时,速度是1小时行145千米,问该城市到北京两地之间的路程是多少千米”,我
4、马上问:“谁知道它们间有什么关系?”又有学生举手:“速度×时间=路程。”我根据学生的叙述板书该公式。接着又有学生说:“我知道怎么列算式了”接着让该学生演板。然后让学生讨论列竖式计算的方法。最后教师要引导强调三位数乘两位数列坚式时,用两位数中的十位数去三位数时,得到的第一个数一定要与十数对齐。整个过程教师只起一个引导的作用,任务的完成基本都是学生自己完成的。学生不但掌握了知识,也锻炼了自学、概括的能力,培养了理解、表达能力。学生的主体意识得到了张扬,学习的主体作用得到了发挥,培养了学生主动参与到学习中来。二、放开学生允许学生争论。在我们的过去教学中,总是教师一言堂,把知识
5、硬灌输给学生,看起来是一节很完美的课堂。学生参与学习的积极性被遏制,学习的冲动和热情被束缚。他们提前被老师设计安排好,只有老师需要学生发言时,才让学生回答。老师不点名,不准开口。一个看上去十分良好的课堂秩序很有利于教师的“教”,部分学生也能接受教师“教”的知识,但是知识不能灵活运用,换一种说法,换一种生活场景后,学生就不知道怎么办了。而且最重要的是学生没有形成自主学习的能力和自主学习的意识、方法。学生只能被动机械地学习,学生学到的知识比较死板。对学生以后的学习造成制约。在传统的教学中总是希望学生多深思,多思考。可很多的智慧火花是在积极发言中,相互辩论中突然闪现的。所以在
6、教学中,要让学生动静结合,静是让学生对新知识的理解和消化过程,动是让学生对所学知识进行升化。学生的主体作用被压抑,本有的学习灵感有时就会磨灭。“世界原本是无序的”,孩子们在这无序中能了解世界,认识自然,掌握许多知识,会有新的发明创造,是因为他的思维不受约束。当然,不是说乱成一团才为妙,但一个开放的、体现学生主体作用的课,应该有他们自由表达意见的空间。适度的“乱”,是在教师控制之中的“乱”,在一定程度上可以激发学生学习的主动性,让他们真正参加到学习中。例如,在教学“圆的面积”时,我在黑板上开始展示了一道这样的题:如图,已知正方形的面积是9cm2,求⊙O的面积。学生刚学会圆
7、的面积计算方法,所以学生基本上都会做。学生一般都是立即想到先根据正方形的面积计算出圆的半径r=3cm,然后再根据S=πr2很快算出了圆的面积。有学生提出疑问:“不用算圆的半径就可以算出圆的面积,因为r2=9cm2,可以直接用公式算出圆的面积”。接着我又把题目改成如下:如图,已知正方形的面积是2cm2,求⊙O的面积。不少学生利用上面的第二种方法算出了圆的面积。由于小学生知识的局限性,有一位学生提出了疑问:“正方形的面积不会是2cm2,因为边长算不出来”,也有不少学生赞同这一观点。立即也有学生起来说,这样的正方形好像存在,以前拼图中有过这样的
此文档下载收益归作者所有