2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt

2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt

ID:61914382

大小:551.00 KB

页数:22页

时间:2021-03-29

2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt_第1页
2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt_第2页
2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt_第3页
2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt_第4页
2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt_第5页
资源描述:

《2012高考数学一轮复习--三角函数的图象和性质-ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、4、三角函数的图象和性质苏教版高中数学2010高考第一轮复习yyyy年M月d日星期一、三角函数图象的作法1.几何法y=sinx作图步骤:(2)平移三角函数线;(3)用光滑的曲线连结各点.(1)等分单位圆作出特殊角的三角函数线;xyoPMAxyoy=sinx-11o1A22322.五点法作函数y=Asin(x+)的图象的步骤:(1)令相位x+=0,,,,2,解出相应的x的值;232(3)用光滑的曲线连结(2)中五点.(2)求(1)中x对应的y的值,并描出相应五点;3.变换法:函数y=Asin(x+)+k与y=sinx图象间的关系:①函数y=sin

2、x的图象纵坐标不变,横坐标向左(>0)或向右(<0)平移

3、

4、个单位得y=sin(x+)的图象;②函数y=sin(x+)图象的纵坐标不变,横坐标变为原来的,得到函数y=sin(x+)的图象;1一、三角函数图象的作法③函数y=sin(x+)图象的横坐标不变,纵坐标变为原来的A倍,得到函数y=Asin(x+)的图象;④函数y=Asin(x+)图象的横坐标不变,纵坐标向上(k>0)或向下(k<0)平移

5、k

6、个单位得y=Asin(x+)+k的图象.要特别注意,若由y=sin(x)得到y=sin(x+)的图象,则向左或向右平移应平移

7、

8、个单位.3

9、.变换法:函数y=Asin(x+)+k与y=sinx图象间的关系:一、三角函数图象的作法二、三角函数图象的性质注:正切函数的对称中心有两类:一类是图象与x轴的交点,另一类是渐近线与x轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处.1.正弦函数y=sinx(xR)是奇函数,对称中心是(k,0)(kZ),对称轴是直线x=k+(kZ);余弦函数y=cosx(xR)是偶函数,对称中心是(k+,0)(kZ),对称轴是直线x=k(kZ)(正,余弦函数的对称轴为过最高点或最低点且垂直于x轴的直线,对称中心为图象与x轴的交点).222.正切函数y=tanx

10、(xR,x+k,kZ)是奇函数,对称中心是(,0)(kZ).2k2三、正、余弦函数的性质1.定义域:都是R.2.值域:都是[-1,1].对y=sinx,当x=2k+(kZ)时,y取最大值1;当x=2k+(kZ)时,y取最小值-1;对y=cosx,当x=2k(kZ)时,y取最大值1,当x=2k+(kZ)时,y取最小值-1.2233.周期性:①y=sinx、y=cosx的最小正周期都是2;②f(x)=Asin(x+)和f(x)=Acos(x+)的最小正周期都是T=.

11、

12、25.单调性:y=sinx在[2k-,2k+](kZ)

13、上单调递增,在[2k+,2k+](kZ)上单调递减;y=cosx在[2k,2k+](kZ)上单调递减,在[2k+,2k+2](kZ)上单调递增.222234.奇偶性与对称性:正弦函数y=sinx(xR)是奇函数,对称中心是(k,0)(kZ),对称轴是直线x=k+(kZ);余弦函数y=cosx(xR)是偶函数,对称中心是(k+,0)(kZ),对称轴是直线x=k(kZ)(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x轴的直线,对称中心为图象与x轴的交点).22三、正、余弦函数的性质2.值域是R,在上面定义域上无最大值

14、也无最小值.1.定义域:{x

15、x+k,kZ}.23.周期性:是周期函数且周期是,它与直线y=a的两个相邻交点之间的距离是一个周期.注一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变!四、正切函数的性质1.求函数y=sin4x+23sinxcosx-cos4x的最小正周期和最小值,并写出该函数在[0,]上的单调增区间.解:由y=sin4x+23sinxcosx-cos4x=(sin2x-cos2x)(sin2x+cos2x)+3sin2x=3sin2x-cos2x6=2sin(2x-)故该函数的最小正周期是,最小值是-2.3在[0,

16、]上的单调增区间是[0,]和[,].65由2k-≤2x-≤2k+(kZ)得:226k-≤x≤k+(kZ).36令k=0,1即得函数y=sin4x+23sinxcosx-cos4x五、检测反馈题2.已知函数y=cos2x+sinxcosx+1,xR.(1)求当y取得最大值时自变量x的集合;(2)该函数的图象可由y=sinx(xR)的图象经过怎样的平移和伸缩变换得到?1232解:(1)y=cos2x+sinxcosx+1=cos2x+sin2x+12321434546=sin(2x+)+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。