人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx

人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx

ID:61903198

大小:992.41 KB

页数:6页

时间:2021-03-26

人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx_第1页
人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx_第2页
人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx_第3页
人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx_第4页
人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx_第5页
资源描述:

《人教A版高中数学必修第一册4.5.1《函数的零点与方程的解》教案(1).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章函数的应用(二)4.5.1函数零点与方程的解本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标学科素养1、了解函数(结合二次函数)零点的概念;2、理解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及

2、函数思想;a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;教学重点:零点的概念及存在性的判定;教学难点:零点的确定.多媒体教学过程设计意图核心教学素养目标(一)创设问题情境问题1求下列方程的根.(1);(2);(3);解方程的历史方程解法时间图·中国公元50年—100年一次方程、二次方程和三次方程根11世纪·北宋·贾宪三次方程正根数值解法13世纪·南宋秦九韶任意次代数方程正根解法7世纪·隋唐·王孝通三次或三次以上方程方程解法时间图·西方一次方程、二次方程的一般解

3、法1541年·意大利塔尔塔利亚三次方程一般解法1802~1829挪威·阿贝尔证明了五次以上一般方程没有求根公式记载了费拉里的四次方程一般解法9世纪·阿拉伯花拉子米1545年·意大利卡尔达诺(二)问题探究探究1:观察函数的图象思考:方程x2-2x-3=0x2-2x+1=0x2-2x+3=0根x1=-1,x2=3x1=x2=1无实数根函数y=x2-2x-3y=x2-2x+1y=x2-2x+3通过对一元二次方程与二次函数关系的回顾,提出新的问题,提出运用函数求解方程的思路;培养和发展逻辑推理和数学抽象、直观想象的核心素养。通过特殊的二次函数问题的探究,推广一般的方程求解问题的方法,提出零的

4、的概念;发展学生逻辑推理,直观想象、数学图象42-2-43-112Oxy42-2-43-112Oxy42-23-112Oxy图象与x轴的交点两个交点:(-1,0)(3,0)一个交点:(1,0)没有交点1.方程的根与函数的图象和x轴交点的横坐标有什么关系?1).方程根的个数和对应函数与x轴交点个数相同.2).方程的根是函数与x轴交点的横坐标.3).若一元二次方程无实数根,则相应的二次函数图像与x轴无交点.思考:若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?判别式ΔΔ>0Δ=0Δ<0方程ax2+bx+c=0(a>0)的根两

5、个不相等的实数根x1、x2有两个相等的实数根x1=x2没有实数根函数y=ax2+bx+c(a>0)的图象Oxyx1x2Oyxx1Oxy函数的图象与x轴的交点两个交点:(x1,0),(x2,0)一个交点:(x1,0)无交点一元二次方程的根就是相应的二次函数图象与x轴交点的横坐标。若一元二次方程无实数根,则相应的二次函数图像与x轴无交点。推广到更一般的情况,得:零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数的零点是一个点吗?问题1:零点不是一个点,零点指的是一个实数.问题2:试归纳函数零点的等价说法?跟踪训练1.思考辨析抽象、数学运算等核心素养;

6、通过零点(1)所有的函数都有零点.()(2)若方程f(x)=0有两个不等实根x1,x2,则函数y=f(x)的零点为(x1,0)(x2,0).()(3)若函数y=f(x)在区间(a,b)上有零点,则一定有f(a)·f(b)<0.()2.函数y=2x-1的零点是()A.B.C.D.2A[由2x-1=0得x=.]零点存在性定理的探索.问题5:结合图像,试用恰当的语言表述如何判断函数在某个区间上是否存在零点?观察函数的图象:①在区间(a,b)上___(有/无)零点;f(a)·f(b)___0(“<”或“>”).②在区间(b,c)上___(有/无)零点;f(b)·f(c)___0(“<”或“>

7、”).cbdaxOy③在区间(c,d)上___(有/无)零点;f(c)·f(d)___0(“<”或“>”).零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c就是方程f(x)=0的根.定理解读思考1:为什么强调“函数y=f(x)在区间[a,b]上的图象一条不间断的曲线”?如果函数图象不连续,或者y=f(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。