导数的应用—函数的单调性.ppt

导数的应用—函数的单调性.ppt

ID:61809690

大小:306.00 KB

页数:18页

时间:2021-03-21

导数的应用—函数的单调性.ppt_第1页
导数的应用—函数的单调性.ppt_第2页
导数的应用—函数的单调性.ppt_第3页
导数的应用—函数的单调性.ppt_第4页
导数的应用—函数的单调性.ppt_第5页
资源描述:

《导数的应用—函数的单调性.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数的单调性函数y=f(x)在给定区间G上,当x1、x2∈G且x1<x2时函数单调性判定单调函数的图象特征yxoabyxoab1)都有f(x1)<f(x2),则f(x)在G上是增函数;2)都有f(x1)>f(x2),则f(x)在G上是减函数;若f(x)在G上是增函数或减函数,增函数减函数则f(x)在G上具有严格的单调性。G称为单调区间G=(a,b)一、复习与引入:二、新课:我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数y=x2-4x+3的图像可以看到:yxo11-1在区间(2,+∞)内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即

2、>0时,函数y=f(x)在区间(2,+∞)内为增函数.在区间(-∞,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即<0时,函数y=f(x)在区间(-∞,2)内为减函数.aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0定义:一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间内>0,那么函数y=f(x)在为这个区间内的增函数;如果在这个区间内<0,那么函数y=f(x)在为这个区间内的减函数.由上我们可得以下的结论:如果在某个区间内恒有,则为常数.例2:讨论f(x)=x3-6x2+9x-3的单调性.解:f'(x)=3x2-12

3、x+9令3x2-12x+9>0,解得x>3或x<1,因此,当或时,f(x)是增函数.令3x2-12x+9<0,解得10得f(x)的单调递增区间;解不等式<0得f(x)的单调递减区间.练习1:求函数y=2x3+3x2-12x+1的单调区间.答案:递增区间是和;递减区间是(-2,1).设函数y=f(x)在某个区间内有导数,如果在这个区间内y′

4、>0,那么y=f(x)为这个区间内的增函数;如果在这个区间内y′<0,那么y=f(x)为这个区间内的减函数.判断函数单调性的常用方法:(1)定义法(2)导数法结论:y′>0增函数y′<0减函数三、综合应用:例1:确定下列函数的单调区间:(1)f(x)=x/2+sinx;解:(1)函数的定义域是R,令,解得令,解得因此,f(x)的递增区间是:递减区间是:∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)=在(0,+∞)上是减函数.例2证明函数f(x)=在(0,+∞)上是减函数.证法一:(用以前学的方法证)任取两个数x1,x2∈(0,+∞)设x1<x2.f(x1)

5、-f(x2)=∵x1>0,x2>0,∴x1x2>0∵x1<x2,∴x2-x1>0,∴>0点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性.证法二:(用导数方法证)∵f′(x)=()′=(-1)·x-2=-,x>0,∴x2>0,∴-<0.∴f′(x)<0,∴f(x)=在(0,+∞)上是减函数.证明:令f(x)=e2x-1-2x.∴f′(x)=2e2x-2=2(e2x-1)∵x>0,∴e2x>e0=1,∴2(e2x-1)>0,即f′(x)>0∴f(x)=e2x-1-2x在(0,+∞)上是增函数.∵f(0

6、)=e0-1-0=0.∴当x>0时,f(x)>f(0)=0,即e2x-1-2x>0.∴1+2x<e2x例3当x>0时,证明不等式:1+2x<e2x.分析:假设令f(x)=e2x-1-2x.∵f(0)=e0-1-0=0,如果能够证明f(x)在(0,+∞)上是增函数,那么f(x)>0,则不等式就可以证明.点评:所以以后要证明不等式时,可以利用函数的单调性进行证明,把特殊点找出来使函数的值为0.∴y=x+的单调减区间是(-1,0)和(0,1)例5已知函数y=x+,试讨论出此函数的单调区间.解:y′=(x+)′=1-1·x-2=令>0.解得x>1或x<-1.∴y=x+的单调增区间是

7、(-∞,-1)和(1,+∞).令<0,解得-1<x<0或0<x<1.上是单调函数。例6(2000年全国高考题)设函数其中a>0,求a的取值范围,使函数f(x)在区间分析:求,当x∈时,看变化范围。例6(2000年全国高考题)设函数其中a>0,求a的取值范围,使函数f(x)在区间上是单调函数。即例7.设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间。用导数法确定函数的单调性时的步骤是:(1)求出函数的导函数(2)求解不等式f′(x)>0,求得其解集,再根据解集写出单调递增区间(3)求解不等式

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。