欢迎来到天天文库
浏览记录
ID:61768619
大小:154.50 KB
页数:7页
时间:2021-03-19
《2022版高考数学一轮复习课后限时集训36数列的概念与简单表示法含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课后限时集训(三十六) 数列的概念与简单表示法建议用时:40分钟一、选择题1.已知数列,,,…,,,则3是这个数列的( )A.第20项B.第21项C.第22项D.第23项C [由题意知,数列的通项公式为an=,令=3得n=22,故选C.]2.(多选)(2020·长沙一模)已知某数列的前4项依次为2,0,2,0,则依此归纳该数列的通项公式可能是( )A.an=(-1)n-1+1B.an=C.an=2sinD.an=cos(n-1)π+1ABD [对n=1,2,3,4进行验证,如an=2sin不符合题意,故选ABD.]3.数列{an}中,an+
2、1=2an+1,a1=1,则a6=( )A.32B.62C.63D.64C [数列{an}中,an+1=2an+1,故an+1+1=2(an+1),因为a1=1,故a1+1=2≠0,故an+1≠0,所以=2,所以{an+1}是首项为2,公比为2的等比数列.所以an+1=2n,即an=2n-1,故a6=63,故选C.]4.(2020·柳州模拟)若数列{an}满足a1=2,an+1=,则a2020的值为( )A.2B.-3C.-D.D [由题意知,a2==-3,a3==-,a4==,a5==2,a6==-3,…,因此数列{an}是周期为4的周期
3、数列,∴a2020=a505×4=a4=.故选D.]5.(多选)(2020·广东阳江模拟)若数列{an}满足对任意的n∈N*且n≥3,总存在i,j∈N*(i≠j,i4、a1+a2,所以数列{3n}不是“T数列”;令an=n-1,则an=n-2+n-3=an-1+an-2(n≥3),所以数列是“T数列”.故选AD.]6.(多选)已知数列{an}的通项公式为an=(n+2)·n,则下列说法正确的是( )A.数列{an}的最小项是a1B.数列{an}的最大项是a4C.数列{an}的最大项是a5D.当n≥5时,数列{an}递减BCD [假设第n项为{an}的最大项,则即解得4≤n≤5,又n∈N*,所以n=4或n=5,故数列{an}中a4与a5均为最大项,且a4=a5=.]二、填空题7.若数列{an}的前n项和Sn=5、n2-n,则数列{an}的通项公式an=________.n-1 [当n=1时,a1=S1=.当n≥2时,an=Sn-Sn-1=n2-n-=-1.又a1=适合上式,则an=n-1.]8.(2020·重庆沙坪坝区期中)大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为________.840 [由题意得,大衍数列的奇数项依次为,,,…易知大衍数列的第41项为=840.]9.若数列{an}的前n项和S6、n=n2-10n(n∈N*),则数列{an}的通项公式an=________,数列{nan}中数值最小的项是第________项.2n-11(n∈N*) 3 [∵Sn=n2-10n,∴当n≥2时,an=Sn-Sn-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴an=2n-11(n∈N*).记f(n)=nan=n(2n-11)=2n2-11n,此函数图象的对称轴为直线n=,但n∈N*,∴当n=3时,f(n)取最小值.∴数列{nan}中数值最小的项是第3项.]三、解答题10.已知各项都为正数的数列{an}满足a1=1,a-(2an+1-7、1)an-2an+1=0.(1)求a2,a3;(2)求{an}的通项公式.[解] (1)由题意可得a2=,a3=.(2)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因为{an}的各项都为正数,所以=.故{an}是首项为1,公比为的等比数列,因此an=.11.已知数列{an}满足a1=50,an+1=an+2n(n∈N*),(1)求{an}的通项公式;(2)已知数列{bn}的前n项和为an,若bm=50,求正整数m的值.[解] (1)当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a8、3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×+50=n2-n+50.又a1=50=12-1+50,∴{
4、a1+a2,所以数列{3n}不是“T数列”;令an=n-1,则an=n-2+n-3=an-1+an-2(n≥3),所以数列是“T数列”.故选AD.]6.(多选)已知数列{an}的通项公式为an=(n+2)·n,则下列说法正确的是( )A.数列{an}的最小项是a1B.数列{an}的最大项是a4C.数列{an}的最大项是a5D.当n≥5时,数列{an}递减BCD [假设第n项为{an}的最大项,则即解得4≤n≤5,又n∈N*,所以n=4或n=5,故数列{an}中a4与a5均为最大项,且a4=a5=.]二、填空题7.若数列{an}的前n项和Sn=
5、n2-n,则数列{an}的通项公式an=________.n-1 [当n=1时,a1=S1=.当n≥2时,an=Sn-Sn-1=n2-n-=-1.又a1=适合上式,则an=n-1.]8.(2020·重庆沙坪坝区期中)大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为________.840 [由题意得,大衍数列的奇数项依次为,,,…易知大衍数列的第41项为=840.]9.若数列{an}的前n项和S
6、n=n2-10n(n∈N*),则数列{an}的通项公式an=________,数列{nan}中数值最小的项是第________项.2n-11(n∈N*) 3 [∵Sn=n2-10n,∴当n≥2时,an=Sn-Sn-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴an=2n-11(n∈N*).记f(n)=nan=n(2n-11)=2n2-11n,此函数图象的对称轴为直线n=,但n∈N*,∴当n=3时,f(n)取最小值.∴数列{nan}中数值最小的项是第3项.]三、解答题10.已知各项都为正数的数列{an}满足a1=1,a-(2an+1-
7、1)an-2an+1=0.(1)求a2,a3;(2)求{an}的通项公式.[解] (1)由题意可得a2=,a3=.(2)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因为{an}的各项都为正数,所以=.故{an}是首项为1,公比为的等比数列,因此an=.11.已知数列{an}满足a1=50,an+1=an+2n(n∈N*),(1)求{an}的通项公式;(2)已知数列{bn}的前n项和为an,若bm=50,求正整数m的值.[解] (1)当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a
8、3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×+50=n2-n+50.又a1=50=12-1+50,∴{
此文档下载收益归作者所有