欢迎来到天天文库
浏览记录
ID:6163253
大小:175.00 KB
页数:7页
时间:2018-01-05
《函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.●难点磁场(★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数.●案例探究[例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当02、意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y是解题关键;对于(2),判定的范围是焦点.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x3、)在(0,1)上单调递减.令00,1-x1x2>0,∴>0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0∴x2-x1<1-x2x1,∴0<<1,由题意知f()<0,即f(x2)4、a+1)5、,0)内单调递增,∴f(-x2)3a2-2a+1.解之,得06、判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.●歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是()A.f(x)=(x-1)B.f(x)=C.f(x)=D.f(x)=2.(★★★★★)7、函数f(x)=的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R上为增函数,则y=f(8、x+19、)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(01).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用10、反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m
2、意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y是解题关键;对于(2),判定的范围是焦点.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x
3、)在(0,1)上单调递减.令00,1-x1x2>0,∴>0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0∴x2-x1<1-x2x1,∴0<<1,由题意知f()<0,即f(x2)4、a+1)5、,0)内单调递增,∴f(-x2)3a2-2a+1.解之,得06、判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.●歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是()A.f(x)=(x-1)B.f(x)=C.f(x)=D.f(x)=2.(★★★★★)7、函数f(x)=的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R上为增函数,则y=f(8、x+19、)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(01).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用10、反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m
4、a+1)5、,0)内单调递增,∴f(-x2)3a2-2a+1.解之,得06、判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.●歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是()A.f(x)=(x-1)B.f(x)=C.f(x)=D.f(x)=2.(★★★★★)7、函数f(x)=的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R上为增函数,则y=f(8、x+19、)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(01).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用10、反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m
5、,0)内单调递增,∴f(-x2)3a2-2a+1.解之,得06、判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.●歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是()A.f(x)=(x-1)B.f(x)=C.f(x)=D.f(x)=2.(★★★★★)7、函数f(x)=的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R上为增函数,则y=f(8、x+19、)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(01).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用10、反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m
6、判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.●歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是()A.f(x)=(x-1)B.f(x)=C.f(x)=D.f(x)=2.(★★★★★)
7、函数f(x)=的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R上为增函数,则y=f(
8、x+1
9、)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(01).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用
10、反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m
此文档下载收益归作者所有