欢迎来到天天文库
浏览记录
ID:61435359
大小:4.00 MB
页数:40页
时间:2021-01-30
《理科数学复习概率与统计.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、理科数学复习概率与统计一.考点回顾:1.两个原理及排列组合的理解和应用;2.排列数与组合数的公式与性质;3.二项式定理的通项公式与赋值法的理解及应用;4.等可能性事件,互斥事件(对立事件),独立事件(独立重复试验)的意义及其概率的求法;5.(理科)离散型随机变量的分布列、数学期望与方差的求法和实际意义;6.频率分布表及频率分布条形图、直方图的理解和应用;7.简单随机抽样、系统抽样、分层抽样的操作方法以及它们的区别与联系;8.(理科)正态分布与正态曲线的概念与性质的理解并掌握简单应用;9.(理科)了解线性回归的概念
2、及性质;(一)、两个原理.1.乘法原理、加法原理.2.可以有重复元素的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·…m=mn..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:种)(二)、排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.⑵相同排列.如果;两
3、个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号表示.⑷排列数公式:注意:规定0!=1规定2.含有可重元素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n=n1+n2+……nk,则S的排列个数等于.例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5
4、、求其排列个数?其排列个数.(三)、组合.1.⑴组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.⑵组合数公式:⑶两个公式:①②①从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确
5、定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有C种,依分类原理有.⑷排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.(四)、排列、组合综合.1.I.排列、组合问题几大解题方法及题型:①直接法.②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待
6、整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某个元素必相邻的排列有个.其中是一个“整体排列”,而则是“局部排列”.又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为.②有n件不同商品,若其中A、B排在一起有.③有n件不同商品,若其中有二件要排在一起有.注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“
7、元素不相邻问题”.例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n–m+1≥m,即m≤时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排
8、成一列,其中m个元素次序一定,共有种排列方法.例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n=n!/m!;解法二:(比例分配法).⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有(平均分组就用不着管组与组之间的顺序问题了)又例如将2
此文档下载收益归作者所有