欢迎来到天天文库
浏览记录
ID:61033910
大小:1.14 MB
页数:14页
时间:2020-02-04
《二次函数及压轴题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、朝阳24.(本小题满分7分)已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大,若存在,求出点D坐标;若不存在,请说明理由.崇文25.已知抛物线经过点A(
2、1,3)和点B(2,1).(1)求此抛物线解析式;(2)点C、D分别是轴和轴上的动点,求四边形ABCD周长的最小值;(3)过点B作轴的垂线,垂足为E点.点P从抛物线的顶点出发,先沿抛物线的对称轴到达F点,再沿FE到达E点,若P点在对称轴上的运动速度是它在直线FE上运动速度的倍,试确定点F的位置,使得点P按照上述要求到达E点所用的时间最短.(要求:简述确定F点位置的方法,但不要求证明)23.已知P()和Q(1,)是抛物线上的两点.(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,
3、请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.东城18.已知:二次函数中的满足下表:…0123……0…(1)的值为;(2)若,两点都在该函数的图象上,且,试比较与的大小.23.已知抛物线C1:的图象如图所示,把C1的图象沿轴翻折,得到抛物线C2的图象,抛物线C1与抛物线C2的图象合称图象C3.(1)求抛物线C1的顶点A坐标,并画出抛物线C2的图象;(2)若直线与抛物线有且只有一个交点时,称直线与抛物线相切.若直线与抛物线C1相切,求的值;(3)结合图象回答,当直线与
4、图象C3有两个交点时,的取值范围.24.如图,在平面直角坐标系中,A(,0),B(,2).把矩形OABC逆时针旋转得到矩形.(1)求点的坐标;(2)求过点(2,0)且平分矩形面积的直线方程;备用图(3)设(2)中直线交轴于点P,直接写出与的面积和的值及与的面积差的值.丰台23.(本小题满分7分)已知二次函数.(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点
5、B的左边),一个动点P自A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.25.(本小题满分8分)已知抛物线. (1)求抛物线顶点M的坐标; (2)若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围; (3
6、)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由. 海淀23.关于的一元二次方程有实数根,且为正整数.(1)求的值;(2)若此方程的两根均为整数,在平面直角坐标系中,抛物线与轴交于、两点(在左侧),与轴交于点.点为对称轴上一点,且四边形为直角梯形,求的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点的坐标为,当抛物线与(2)中的直角梯形只有两个交点,且一个交点在边上时,直接写出的取值范围.24.点为抛物线(为常数,)上任一点,将抛物线绕顶点
7、逆时针旋转后得到的新图象与轴交于、两点(点在点的上方),点为点旋转后的对应点.(1)当,点横坐标为4时,求点的坐标;(2)设点,用含、的代数式表示;(3)如图,点在第一象限内,点在轴的正半轴上,点为的中点,平分,,当时,求的值.石景山23.已知:与两个函数图象交点为,且,是关于的一元二次方程的两个不等实根,其中为非负整数.(1)求的值;(2)求的值;(3)如果与函数和交于两点(点在点的左侧),线段,求的值.25.已知:如图1,等边的边长为,一边在轴上且,交轴于点,过点作∥交于点.(1)直接写出点的坐标;(2)若直线将
8、四边形的面积两等分,求的值;(3)如图2,过点的抛物线与轴交于点,为线段上的一个动点,过轴上一点作的垂线,垂足为,直线交轴于点,当点在线段上运动时,现给出两个结论:①②,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.图1图2西城23.已知关于x的方程.(1)求证:无论m取任何实数时,方程总有实数根;(2)若关于的二次函数的图象关于
此文档下载收益归作者所有