资源描述:
《(通用版)2020版高考数学复习专题七解析几何7.3解析几何解答题(压轴题)练习文.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、7.3 解析几何解答题(压轴题)高考命题规律1.高考必考考题,压轴题.2.解答题,12分,中高档难度.3.全国高考有5种命题角度,分布如下表.2020年高考必备2015年2016年2017年2018年2019年Ⅰ卷Ⅱ卷Ⅰ卷Ⅱ卷Ⅲ卷Ⅰ卷Ⅱ卷Ⅲ卷Ⅰ卷Ⅱ卷Ⅲ卷Ⅰ卷Ⅱ卷Ⅲ卷命题角度1曲线与轨迹问题2020命题角度2直线与圆锥曲线的位置关系20202020命题角度3圆锥曲线的最值、范围问题212020命题角度4圆锥曲线的定值、定点问题202021命题角度5圆锥曲线的探究、存在性问题20命题角度1曲线与轨迹问题 高考真题体验·对方向1.(2017全国Ⅱ·20)设O为坐标原点,动点M
2、在椭圆C:x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP=2NM.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OP·PQ=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)解 设P(x,y),M(x0,y0),则N(x0,0),NP=(x-x0,y),NM=(0,y0).由NP=2NM得x0=x,y0=22y.因为M(x0,y0)在C上,所以x22+y22=1.因此点P的轨迹方程为x2+y2=2.(2)证明 由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ=(-3,t),PF=(-1-m,-n),OQ·PF=3+3m-tn
3、,OP=(m,n),PQ=(-3-m,t-n).由OP·PQ=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以OQ·PF=0,即OQ⊥PF.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(1)证明 由题知F12,0.设l1:y=a,l2:
4、y=b,则ab≠0,且Aa22,a,Bb22,b,P-12,a,Q-12,b,R-12,a+b2.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.所以AR∥FQ.(2)解 设l与x轴的交点为D(x1,0),则S△ABF=12
5、b-a
6、
7、FD
8、=12
9、b-a
10、x1-12,S△PQF=
11、a-b
12、2.由题设可得12
13、b-a
14、x1-12=
15、a-b
16、2,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y
17、).当AB与x轴不垂直时,由kAB=kDE可得2a+b=yx-1(x≠1).而a+b2=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.典题演练提能·刷高分1.(2019西南名校联盟重庆第八中学高三5月月考六)设抛物线C1的方程为x2=4y,点M(x0,y0)(x0≠0)在抛物线C2:x2=-y上,过M作抛物线C1的切线,切点分别为A,B,圆N是以线段AB为直径的圆.(1)若点M的坐标为(2,-4),求此时圆N的半径长;(2)当M在x2=-y上运动时,求圆心N的轨迹方程.解 (1)设N(x,y),Ax1,x124,Bx2,
18、x224,x1≠x2,切线MA,MB的方程分别为y=x12(x-x1)+x124,y=x22(x-x2)+x224,得MA,MB的交点M(x0,y0)的坐标为x0=x1+x22=2,y0=x1x24=-4.又kAB=x224-x124x2-x1=x1+x24=1,
19、AB
20、=1+k2(x1+x2)2-4x1x2=410,∴r=12
21、AB
22、=210.(2)∵N为线段AB的中点,∴x=x1+x22,y=x12+x228.点M在C2上,即x02=-y0.由(1)得x1+x222=-x1x24,则x1+x222=-(x1+x2)2-(x12+x22)8.∴x2=-4x2-8y8,
23、x≠0,即x2=23y(x≠0).∴圆心N的轨迹方程为x2=23y(x≠0).2.已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-34.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.解 (1)设P(x,y),∵A(-2,0),B(2,0),∴k1=yx+2,k2=yx-2,又k1k2=-34,∴y2x2-4=-34,∴x24+y23=1(x≠±2)