习题课 级数的收敛、求和与展开复习进程.ppt

习题课 级数的收敛、求和与展开复习进程.ppt

ID:60856978

大小:734.00 KB

页数:26页

时间:2020-12-23

习题课 级数的收敛、求和与展开复习进程.ppt_第1页
习题课 级数的收敛、求和与展开复习进程.ppt_第2页
习题课 级数的收敛、求和与展开复习进程.ppt_第3页
习题课 级数的收敛、求和与展开复习进程.ppt_第4页
习题课 级数的收敛、求和与展开复习进程.ppt_第5页
资源描述:

《习题课 级数的收敛、求和与展开复习进程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、习题课级数的收敛、求和与展开一、数项级数的审敛法1.利用部分和数列的极限判别级数的敛散性2.正项级数审敛法必要条件不满足发散满足比值审敛法根值审敛法收敛发散不定比较审敛法用它法判别积分判别法部分和极限23.任意项级数审敛法为收敛级数Leibniz判别法:若且则交错级数收敛,概念:且余项若收敛,称绝对收敛若发散,称条件收敛3例1.若级数均收敛,且证明级数收敛.证:则由题设收敛收敛收敛4例2.判别下列级数的敛散性:提示:(1)据比较判别法,原级数发散.因调和级数发散,5利用比值判别法,可知原级数发散.用比值法,可判断级数因n充分

2、大时∴原级数发散.用比值判别法可知:时收敛;时,与p级数比较可知时收敛;时发散.再由比较法可知原级数收敛.时发散.发散,收敛,6例3.设正项级数和也收敛.提示:因存在N>0,又因利用收敛级数的性质及比较判敛法易知结论正确.都收敛,证明级数当n>N时7例4.设级数收敛,且是否也收敛?说明理由.但对任意项级数却不一定收敛.问级数提示:对正项级数,由比较判别法可知级数收敛,收敛,级数发散.例如,取8例5.讨论下列级数的绝对收敛性与条件收敛性:提示:(1)P>1时,绝对收敛;0

3、对值后所得强级数原级数绝对收敛.故9因单调递减,且但所以原级数仅条件收敛.由Leibniz判别法知级数收敛;10因所以原级数绝对收敛.11二、求幂级数收敛域的方法•标准形式幂级数:先求收敛半径R,再讨论•非标准形式幂级数通过换元转化为标准形式直接用比值法或根值法处的敛散性.例7.求下列级数的敛散区间:12解:当因此级数在端点发散,时,时原级数收敛.故收敛区间为13解:因故收敛区间为级数收敛;一般项不趋于0,级数发散;14例2.解:分别考虑偶次幂与奇次幂组成的级数极限不存在∵原级数=∴其收敛半径注意:15•求部分和式极限三、幂

4、级数和函数的求法求和•映射变换法逐项求导或求积分对和式积分或求导难直接求和:直接变换,间接求和:转化成幂级数求和,再代值求部分和等•初等变换法:分解、套用公式(在收敛区间内)•数项级数求和16例1.求幂级数法1易求出级数的收敛域为17法2先求出收敛区间则设和函数为18例2.解:(1)显然x=0时上式也正确,故和函数为而在x≠0求下列幂级数的和函数:级数发散,19(2)20显然x=0时,和为0;根据和函数的连续性,有x=1时,级数也收敛.即得21例3:解:原式=的和.求级数22四、函数的幂级数展开法•直接展开法•间接展开法例

5、题:1.将函数展开成x的幂级数.—利用已知展式的函数及幂级数性质—利用泰勒公式解:1.函数的幂级数展开法232.设,将f(x)展开成x的幂级数,的和.(01考研)解:于是并求级数2425此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。