欢迎来到天天文库
浏览记录
ID:60852783
大小:50.00 KB
页数:2页
时间:2020-12-23
《临终关怀模版讲解学习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、…………………………………………………………最新精品资料推荐………………………………………………………………………………………………………………最新精品资料推荐……………………………………………………2…………………………………………………………最新精品资料推荐……………………………………………………初中几何题解题技巧在小学阶段,我们学过许多关于几何图形面积计算的知识。在计算几何图形面积时,除了能正确运用面积计算公式外,还需要掌握一定的解题技巧。 一、割补法 割补法是指将一些不规则的、分散的几何图形经过分割、移补,拼成一个规则的几何图形,从而求出面
2、积的方法。 例1如图1,已知正方形的边长是6厘米,求阴影部分的面积。 分析与解:如图2所示,连接正方形的对角线,可以将阴影I分割成I1和I2两部分,然后将阴影I1移至空白I1′处,将阴影I2移至空白I2′处,这样阴影部分就拼成了一个等腰直角三角形。要求阴影部分的面积,只要求出这个等腰直角三角形的面积即可,列式为:6×6÷2=18(平方厘米)。 练一练1:如图3,已知AB=BC=4厘米,求阴影部分的面积。 二、平移法 平移法是指把一些不规则的几何图形沿水平或垂直方向移动,拼成一个规则的几何图形,从而求出面积的方法。 例2
3、如图4,已知长方形的长是12厘米,宽是6厘米,求阴影部分的面积。 分析与解:如图5所示,连结长方形两条长的中点,把阴影部分分成左右两部分,然后把左边的阴影部分向右平移至空白处,这样阴影部分就转化成了一个边长为6厘米的正方形。要求阴影部分的面积,只要求出这个正方形的面积,列式为:6×6=36(平方厘米)。 练一练2:如图6,求阴影部分的面积(单位:分米)。 三、旋转法 旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动一定的角度,使分散的、不规则的几何图形合并成一个规则的几何图形,从而求出面积的方法。 例3如图
4、7,已知ABC是等腰直角三角形,斜边AB=20厘米,D是AB的中点,扇形DAE和DBF都是圆的,求阴影部分的面积。 分析与解:如图8所示,把扇形DBF绕D点沿顺时针方向旋转180°后,扇形DBF与扇形DAE就合并成了一个半径为10厘米的半圆,两个空白三角形也合并成了一个直角边为10厘米的等腰直角三角形,要求阴影部分的面积,只要用半圆的面积减去空白部分的面积即可,列式为:3.14×(20÷2)2÷2-(20÷2)2÷2=107(平方厘米)。 练一练3:如图9,在直角三角形ABC中有一个正方形BDEF,E点正好落在直角三角形的斜边AC上,已
5、知AE=8厘米,EC=12厘米,求图中阴影部分的面积。 …………………………………………………………最新精品资料推荐……………………………………………………2
此文档下载收益归作者所有