用Mathematica求重积分以及相关的应用教学文案.doc

用Mathematica求重积分以及相关的应用教学文案.doc

ID:60808713

大小:440.50 KB

页数:8页

时间:2020-12-20

用Mathematica求重积分以及相关的应用教学文案.doc_第1页
用Mathematica求重积分以及相关的应用教学文案.doc_第2页
用Mathematica求重积分以及相关的应用教学文案.doc_第3页
用Mathematica求重积分以及相关的应用教学文案.doc_第4页
用Mathematica求重积分以及相关的应用教学文案.doc_第5页
资源描述:

《用Mathematica求重积分以及相关的应用教学文案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品好文档,推荐学习交流§5用Mathematica求重积分以及相关的应用5.1常用的重积分运算函数ParametricPlot[{x[t],y[t],{t,a,b}}:作二维参数方程的图形。Plot3D[f[x,y],{x,a,b},{y,c,d}]:作的图形。ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,a,b}{v,c,d}]:作三维参数方程的图形。Integrate[f[x,y],{x,a,b},{y,c,d}]:计算累次积分。例5.1计算下列重积分:1.,其中R=[0,1]×[0,1].解In[1]:=Integrat

2、e[x^3+3x^2y+y^3,{x,0,1},{y,0,1}]Out[1]=12.(p,q是常数),其中R=[0,a]×[0,a].解In[1]:=Integrate[E^(px+qy),{x,0,a},{y,0,a}]Out[1]=3.,其中R=[-1,1]×[-1,1].解In[1]:=Integrate[Abs[x+y],{x,0,Pi},{y,0,Pi}]Out[1]=4.,其中V=[-2,5]×[-3,3]×[0,1].解In[1]:=Integrate[xy+z^2,{x,-2,5},{y,-3,3},{z,0,1}]Out[1]=14例5.2计算下列重

3、积分:1.求二重积分,其中是D由直线x=2,y=x和xy=1双曲线所围成。解先画出被积区域D的图形:In[1]:=Clear[t1,t2];a=ParametricPlot[{2,y},{y,0,3},DisplayFunxtion->Identity];b=Plot[{y=x,y=1/x},PlotRange->{0,3},AspectRatio->Automatic,仅供学习与交流,如有侵权请联系网站删除谢谢1080精品好文档,推荐学习交流DisplayFunction->Indentity];Show[a,b,PlotRange->{0,2.5},AspectR

4、atio->Automatic,DisplayFunction->$DisplayFunction];Out[1]=-Graphics-再求出D的边界曲线的交点:In[2]:=Solve[x-2==0,y-x==0,{x,y}]Solve[x-2==0,xy-1==0,{x,y}]Solve[xy-1==0,y-x==0,{x,y}]Out[2]={{x->2,y->2}}{{x->,y->2}}{{x->-1,y->-1},{x->1,y->1}}最后计算积分:In[3]:=Clear[y];Integrate[x^2/y^2,{x,1,2},{y,1/x,x}]O

5、ut[3]=1.求二重积分,其中D是.解先画出被积区域的图形:In[1]:=ParametricPlot[{(1/2)Sin[t]+1/2,(1/2)Cos[t]},{t,0,2Pi},AspectRatio->Automatic]Out[1]=-Graphics-仅供学习与交流,如有侵权请联系网站删除谢谢1080精品好文档,推荐学习交流计算积分:In[2]:=Integrate[Sqrt[x],{x,0,1},{y,0,Sqrt[x-x^2]}]Out[2]=1.求三重积分,其中V是由曲面z=xy,平面y=x,x=1,z=0所围成。解先画出空间图形:In[1]:=a

6、1=Plot3D[0,{x,0,2},{y,0,2},DisplayFunction->Identity];a2=Plot3D[xy,{x,0,2},{y,0,2},DisplayFunction->Identity];a3=ParametricPlot3D[{x,x,z}{x,0,2},{z,0,2},DisplayFunction->Identity];a4=ParametricPlot3D[{1,y,z}{y,0,2},{z,0,2},DisplayFunction->Identity];Out[1]=-Graphics-再画出立体关于XOY面的投影域:In[2

7、]:=b1=Plot[x,{-2,2}];b2=ParametricPlot[{1,y},{y,-2,2}];仅供学习与交流,如有侵权请联系网站删除谢谢1080精品好文档,推荐学习交流Show[b1,b2]Out[2]=-Graphics-计算积分:In[3]:=Clear[x,y,z];Integrate[xy^2z^3,{x,0,1},{y,0,x},{z,0,xy}]Out[3]=例5.3求由坐标平面及x=2,y=3,x+y+z=4,所围的角柱体的体积。解In[1]:=Clear[x,y,u,v,t1,t2,t3,t4,a1,a2,a3,a4,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。