欢迎来到天天文库
浏览记录
ID:60774426
大小:490.50 KB
页数:6页
时间:2020-12-17
《六年级奥数-第九讲.复杂抽屉原理.教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第九讲复杂抽屉原理内容概述运用抽屉原理求解的较为复杂的组合计算与证明问题.这里不仅“抽屉”与“苹果”需要恰当地设计与选取,而且有时还应构造出达到最佳状态的例子.典型问题1.从1,2,3,…,1988,1989这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?【分析与解】1,2,3,4,9,10,1l,12,17,18,19,20,25,…,这些数中任何两个数的差都不为4,这些数是每8个连续的数中选取前4个连续的数.有1989÷8=248……5,所以最多可以选248×4+4=996个数.评注:对于这类问题,一
2、种方法是先尽可能的多选择,然后再找出这些数的规律,再计算出最多可以选出多少个.2.从1至1993这1993个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4?【分析与解】1,3,6,8,11,13,16,18,21,…,这些数中任何两个数不连续且差不等于4,这些数是每5个连续的数中选择第1、3个数.1993÷5=398……3.所以最多可以选398×2+2=798个数.评注:当然还可以是1,4,6,9,11,14,16,19,21,…,这些数满足条件,是每5个连续的数中选择第1、4个数.但是此时最多只能选出
3、398×2+l=797个数.3.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?【分析与解】方法一:直接从1开始选1,3,4,5,7,9,11,12,这样可以选出8个数;而从2开始选2,3,5,7,8,9,11,12,这样也是可以选出8个数.3包含在组内,因此只用考虑这两种情况即可.所以,在满足题意情况下,最多可以选出8个数.方法二:我们知道选多少个奇数均满足,有1,3,5,7,9,11均为奇数,并且有偶数中4的倍数,但不是8的倍数的也满足,有4,1
4、2是这样的数.所以,在满足题意情况下最多可以选出8个数.4.从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【分析与解】方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:99,于是从35开始,199的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.方法二:利用3的若干次幂与质数的乘积对这50个奇数分组.(1,3,9,27,
5、81),(5,15,45),(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.评注:12n个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们
6、一个是另一个的整数倍;从1,2,3.……3n中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……,mn中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m倍(m、n为正整数).5.证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【分析与解】因为两个不同的两位数相减得到的差不可能为三位或三位以上的数.如果这个差是1l的倍数,那么一定有这个差的个位与十位数字相同.两个数的差除以1l的余数有0、1、2、3
7、、…、10这11种情况.将这11种情况视为11个抽屉.将12个数视为12个苹果,那么必定有两个苹果在同一抽屉,也就是说有两个数除以11的余数相同,那么它们的差一定是11的倍数.而两个两位数的差一定是一个两位数,如果这个差是11的倍数,那么就有个数与十位数字相等.问题得证.评注:抽屉原理一:将n+1个元素放到n个抽屉中去,则无论怎么放,必定有一个抽屉至少有两个元素.抽屉原理二:将nr+1个元素放到n个抽屉中去,则无论怎么放,必定有一个抽屉至少有r+1个元素.抽屉原理三:将m个元素放到n个抽屉中去(m≥n),则无论怎么放,必定
8、有一个抽屉至少有个元素.6.从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【分析与解】利用除以7的余数分类:余0:(7,14,21,28,35,42,49);余1:(1,8,15,22,29,36,43,50);余2:(2,9,16,23
此文档下载收益归作者所有