最新正弦定理练习题(经典).doc

最新正弦定理练习题(经典).doc

ID:60490431

大小:61.50 KB

页数:4页

时间:2020-12-06

最新正弦定理练习题(经典).doc_第1页
最新正弦定理练习题(经典).doc_第2页
最新正弦定理练习题(经典).doc_第3页
最新正弦定理练习题(经典).doc_第4页
资源描述:

《最新正弦定理练习题(经典).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、__________________________________________________正弦定理练习题1.在△ABC中,A=45°,B=60°,a=2,则b等于(  )A.      B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,则b等于(  )A.4B.4C.4D.3.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=,则c=(  )A.1B.C.2D.4.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=4,b=4,则角B为(  )A.45°或135°B.135°C.45°D.以上答案都不对5.△AB

2、C的内角A、B、C的对边分别为a、b、c.若c=,b=,B=120°,则a等于(  )A.B.2C.D.6.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于(  )A.1∶5∶6      B.6∶5∶1C.6∶1∶5D.不确定7.在△ABC中,若=,则△ABC是(  )A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形8.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=,C=,则A=________.9.在△ABC中,已知a=,b=4,A=30°,则sinB=________.10.在△ABC中,已知∠A=30°,∠B=120

3、°,b=12,则a+c=________.11.在△ABC中,b=4,C=30°,c=2,则此三角形有________组解.12.判断满足下列条件的三角形个数(1)b=39,c=54,有________组解(2)a=20,b=11,有________组解(3)b=26,c=15,有________组解(4)a=2,b=6,有________组解正弦定理1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于(  )A.      B.C.D.2解析:选A.应用正弦定理得:=,求得b==.2.在△ABC中,已知a=8,B=60°,C=75°,则b等于(  )A.4B.4C.4D.收集

4、于网络,如有侵权请联系管理员删除__________________________________________________解析:选C.A=45°,由正弦定理得b==4.3.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=,则c=(  )A.1B.C.2D.解析:选A.C=180°-105°-45°=30°,由=得c==1.4.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=4,b=4,则角B为(  )A.45°或135°B.135°C.45°D.以上答案都不对解析:选C.由正弦定理=得:sinB==,又∵a>b,∴B<60°

5、,∴B=45°.5.△ABC的内角A、B、C的对边分别为a、b、c.若c=,b=,B=120°,则a等于(  )A.B.2C.D.解析:选D.由正弦定理得=,∴sinC=.又∵C为锐角,则C=30°,∴A=30°,△ABC为等腰三角形,a=c=.6.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于(  )A.1∶5∶6        B.6∶5∶1C.6∶1∶5D.不确定解析:选A.由正弦定理知sinA∶sinB∶sinC=a∶b∶c=1∶5∶6.7.在△ABC中,若=,则△ABC是(  )A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形解析:

6、选D.∵=,∴=,sinAcosA=sinBcosB,∴sin2A=sin2B即2A=2B或2A+2B=π,即A=B,或A+B=.8.已知△ABC中,AB=,AC=1,∠B=30°,则△ABC的面积为(  )A.B.C.或D.或解析:选D.=,求出sinC=,∵AB>AC,∴∠C有两解,即∠C=60°或120°,∴∠A=90°或30°.再由S△ABC=AB·ACsinA可求面积.9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=,C=,则A=________.收集于网络,如有侵权请联系管理员删除_____________________________________

7、_____________解析:由正弦定理得:=,所以sinA==.又∵a<c,∴A<C=,∴A=.答案:10.在△ABC中,已知a=,b=4,A=30°,则sinB=________.解析:由正弦定理得=⇒sinB===.答案:11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由=得,a==4,∴a+c=8.答案:812.在△ABC中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。