资源描述:
《数学必修5《数列》单元总结复习ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学必修⑤《数列》单元总结复习一、知识回顾仍成等差仍成等比等差数列等比数列定义通项通项推广中项性质求和公式关系式适用所有数列Ⅰ、等差、等比数列的设法及应用1.三个数成等差数列可设为或者,2.三个数成等比数列,则这三个数可设为,也可以设为例1(1).已知三个数成等差数列,其和为15,其平方和为83,求此三个数.析:设这三个数为则∴所求三个数分别为3,5,7解得x=5,d=或7,5,3.±2.二、知识应用根据具体问题的不同特点而选择不同设法。Ⅱ、运用等差、等比数列的性质例2(1)已知等差数列满足,则()(3)已知在等差数列{an}的前n项中,前四项
2、之和为21,后四项之和为67,前n项之和为286,试求数列的项数n.析:C(2)已知等差数列前项和为30,前项和为100,则前项和为()C例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:如果等差数列{an}由负数递增到正数,或者由正数递减到负数,那么前n项和Sn有如下性质:1.当a1<0,d>0时,2.当a1>0,d<0时,思路1:寻求通项∴n取10或11时Sn取最小值即:易知由于Ⅲ、等差数列的最值问题例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:等差数列{an}的通项an是关于
3、n的一次式,前项和Sn是关于n的二次式(缺常数项).求等差数列的前n项和Sn的最大最小值可用解决二次函数的最值问题的方法.思路2:从函数的角度来分析数列问题.设等差数列{an}的公差为d,则由题意得:∵a1<0,∴d>0,∵d>0,∴Sn有最小值.又∵n∈N*,∴n=10或n=11时,Sn取最小值即:例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项和最小?分析:数列的图象是一群孤立的点,数列前n项和Sn的图象也是一群孤立的点.此题等差数列前n项和Sn的图象是在抛物线上一群孤立的点.求Sn的最大最小值即要求距离对称轴最近的正整数n
4、.因为S9=S12,又S1=a1<0,所以Sn的图象所在的抛物线的对称轴为直线n=(9+12)÷2=10.5,所以Sn有最小值∴数列{an}的前10项或前11项和最小nSnon=10.5类比:二次函数f(x),若f(9)=f(12),则函数f(x)图象的对称轴为直线x=(9+12)÷2=10.5若f(x+2)=f(2-x),则函数f(x)图象的对称轴为直线x=2思路3:函数图像、数形结合令故开口向上过原点抛物线1.分组求和法:若数列的通项可转化为的形式,且数列可求出前n项和则例3.求下列数列的前n项和(1)解(1):该数列的通项公式为小活页P
5、31例1例5、Sn=++……+11×313×51(2n-1)×(2n+1)[分析]:观察数列的前几项:1(2n-1)×(2n+1)=(-)212n-112n+11这时我们就能把数列的每一项裂成两项再求和,这种方法叫什么呢?裂项相消法11×3=(-213111)例5、Sn=++……+11×313×51(2n-1)×(2n+1)解:由通项an=1(2n-1)×(2n+1)=(-)212n-112n+11∴Sn=(-+-+……+-)21311151312n-112n+11=(1-)212n+112n+1n=评:裂项相消法的关键就是将数列的每一项拆成二
6、项或多项使数列中的项出现有规律的抵消项,进而达到求和的目的。2.拆项相消法(或裂项法):若数列的通项公式拆分为某数列相邻两项之差的形式即:或()则可用如下方法求前n项和.常见的拆项公式有:例4、求和Sn=1+2x+3x2+……+nxn-1(x≠0,1)[分析]这是一个等差数列{n}与一个等比数列{xn-1}的对应相乘构成的新数列,这样的数列求和该如何求呢?Sn=1+2x+3x2+……+nxn-1①xSn=x+2x2+……+(n-1)xn-1+nxn②(1-x)Sn=1+x+x2+……+xn-1-nxnn项这时等式的右边是一个等比数列的前n项
7、和与一个式子的和,这样我们就可以化简求值。错位相减法例4、求和Sn=1+2x+3x2++nxn-1(x≠0,1)解:∵Sn=1+2x+3x2++nxn-1∴xSn=x+2x2++(n-1)xn-1+nxn∴①-②,得:(1-x)Sn=1+x+x2++xn-1-nxn∴Sn=1-(1+n)xn+nxn+1(1-x)21-xn1-x=-nxn………………3.错位相减法:设数列是公差为d的等差数列(d不等于零),数列是公比为q的等比数列(q不等于1),数列满足:则的前n项和为:练习:求和Sn=1/2+3/4+5/8+……+(2n-1)/2n答案:S
8、n=3-2n+32n求和Sn=1/2+3/4+5/8+……+(2n-1)/2n设等差数列{an}的公差为d,等比数列{bn}的公比为,则由题意得解析: