概率论中条件期望与停时ppt课件.pptx

概率论中条件期望与停时ppt课件.pptx

ID:59762972

大小:165.87 KB

页数:49页

时间:2020-11-23

概率论中条件期望与停时ppt课件.pptx_第1页
概率论中条件期望与停时ppt课件.pptx_第2页
概率论中条件期望与停时ppt课件.pptx_第3页
概率论中条件期望与停时ppt课件.pptx_第4页
概率论中条件期望与停时ppt课件.pptx_第5页
资源描述:

《概率论中条件期望与停时ppt课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ConditionalityandstoppingtimesinprobabilityMarkOsegard,BenSpeidel,MeganSilberhorn,andDickensNyabutiConditionalExpectationConditionalProbabilityDiscrete:ConditionalProbabilityMassFunctionContinuous:ConditionalProbabilityDensityFunctionConditionalExpectationDiscrete

2、:Continuous:Note:ofy.Wewritethisasisafunctioni.e.(ConditionalExpectationFunction)Theorem:Clearly,whenYisdiscrete,WhenYiscontinuous,Proof:ContinuousCaseRecall,ifX,YarejointlycontinuouswithjointpdfDefine:andNote:ContinuousCaseCont.(Fubini’sTheorem)So,Therefore,concl

3、udingSummary:WhenYisdiscrete,WhenYiscontinuous,ConditionalVarianceDefinitionProofNoteaswell……addinggStoppingtimesStoppingTimesDefinitionApplicationtoProbabilityApplicationsofStoppingTimestootherformulasStoppingTimesBasicDefinition:AStoppingTimeforaprocessdoesexact

4、lythat,ittellstheprocesswhentostop.Ex)while(x!=4){…}Thestoppingtimeforthiscodefragmentwouldbetheinstancewherexdoesequal4.StoppingtimesinSequencesDefine:SupposewehaveasequenceofRandomVariables(allindependentofeachother)Oursequencethenwouldbe:StoppingTimes:ADiscrete

5、CaseFromourpreviousslidewehavethesequence:AdiscreteRandomVariableNisastoppingtimeforthissequenceif:{N=n}WherenisindependentofallfollowingitemsinthesequenceIndependenceSummarizingtheideaofstoppingtimeswithRandomVariablesweseethatthedecisionmadetostopthesequenceatRa

6、ndomVariableNdependssolelyonthevaluesofthesequenceBecauseofthis,wethencanseethatNisindependentofallremainingvaluesApplicationsofStoppingTimesDoesStoppingTimesaffectexpectation?No!Considerthisstatement:Thisformula,theformulausedforConditionalExpectationdoesremainun

7、changedApplyingStoppingTimesForanexampleofhowtousestoppingtimestosolveaproblem,wewillnowintroducetoyouWald’sEquation…Wald’sEquationPropositionIf{X1,X2,X3,…}areindependentidenticallydistributed(iid)randomvariableshavingafiniteexpectationE[X],andNisastoppingtimefort

8、hesequencehavingfiniteexpectationE[N],then:Wald’sProofLetN1=Nrepresentthestoppingtimeforthesequence{X1,X2,…,XN1}LetN2=thestoppingtimeforthesequence{X(N1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。