资源描述:
《状态转移算法及其在工业过程建模与控制中的应用讲课讲稿.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、状态转移算法及其在工业过程建模与控制中的应用Part0引子一类行测题:数字推理数字推理题是行测(行政职业能力测验)考试的必考项目,其数字规律纷繁复杂,一般要求作答者在几秒内得出答案。(1)7,9,-1,5,()A4;B2;C-1;D-3分析:选D,7+9=16;9-1=8;-1+5=4;5-3=2,16,8,4,2形成等比数列(2)1,2,5,29,()A34;B841;C866;D37分析:选C,5=12+22;29=22+52;()=52+292=866Part0引子(3)2,12,30,()A56;B65;C75
2、;D56分析:选D,1×2=2;3×4=12;5×6=30;7×8=56(4)4,2,2,3,6,()A6;B8;C10;D15分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5,2成等差,所以后项为2.5×6=15(5)1,7,8,57,()A123;B122;C121;D120分析:选C,12+7=8;72+8=57;82+57=121(6)95,88,71,61,50,()A40;B39;C38;D37分析:选A,95-9-5=81;88-8-8=72;71-7-1=63;61
3、-1-6=54;50-5-0=45;40-4-0=36,构成等差数列Part0引子答案:多做多练,孰能生巧,摸清出题者的思路。那么出题者的思路是什么呢?经过分析不难发现,出题者出题的思路千变万化。这好比出题者自己掌握了一套密码(规则),要作答者去猜他的密码。这是什么逻辑?答案:毫无逻辑。做这类题目的方法是什么呢?怎样以最快的速度解决该类问题呢?既然没有逻辑,那么数字推理题是不是没有答案,或者任何答案都合理?答案:是。Part0引子要证明一个结论错误往往比证明它正确容易,因为一个反例就够了!(1)7,9,-1,5,()A
4、4;B2;C-1;D-3分析:选D,7+9=16;9-1=8;-1+5=4;5-3=2,16,8,4,2形成等比数列Part1建模中的优化问题优化视角下的建模问题非线性系统辨识问题应用实例Part1建模中的优化问题小结:引子里面讲的数字推理题和我们平常接触到的建模问题从本质上是一致的,由“BP网络可以拟合任意非线性”可知,采用BP网络也是可以拟合上面问题的,只是答案或许不在选择中。引子中给出的答案其实和BP网络无关,它是一种多项式拟合,但从本质上属于“核函数理论”。直接依靠数据进行经验建模,需要确定模型结构和优化模型参
5、数,由于模型结构不确定性,通常采用机理分析或间接的方法。从某种意义上说,机理模型就是完善的经验模型(螺旋分级机)。优化算法一般用在优化模型参数上,但也有优化模型结构的,比如神经网络结构(层数和隐含层节点数),这从理论上和实践上可行,但从逻辑上讲不通。Part2控制中的优化问题鲁棒控制问题PID控制问题小结:控制中的优化问题有些是控制中本身存在的优化问题,比如LMI问题。Part2控制中的优化问题Part2控制中的优化问题Part2控制中的优化问题对其他控制问题,可以将其转换为优化问题的形式。比如PID控制这一类问题中,
6、一般控制器结构确定,需要优化控制器结构参数。比如采用模糊控制器时,可以优化隶属度函数;采用滑模控制器时,可以优化切换函数系数。采用神经网络控制器时,可以优化网络结构,权系数等。Part3智能优化算法及状态转移算法常用的智能优化算法遗传算法(1975)模拟退火算法(1987)粒子群算法(1995)差分进化算法(1995)人工免疫系统(1996)蚁群算法(1997)CMA-ES(2001)……Part3智能优化算法及状态转移算法智能优化算法种类多,机理各异,存在的普遍问题:寻优能力不足,统计性能差。根据“没有免费的午餐”理
7、论,没有一种优化算法能在所有的优化问题上有效。造成这种情况的原因是:(1)优化问题本身的复杂性:不可微,高维,多模态等。(2)优化算法的局限性(认识上的不足)。初中(配方)Part3智能优化算法及状态转移算法高中(求导,特殊函数)大学(多元函数极值)Part3智能优化算法及状态转移算法Part3智能优化算法及状态转移算法研究生(函数的复杂性)多模态高维Part3智能优化算法及状态转移算法收敛性问题最速下降法遗传算法粒子群算法小结:基于梯度的优化算法的收敛性,仅是证明算法能使证明这个结论实际上是没有多大含义的,因为这个条
8、件一般是迭代算法的终止条件,由费马引理可知,函数在极值点的导数为0。也就是说,对于凸优化问题,这个点是永远存在的,只是迭代时间的长短。Part3智能优化算法及状态转移算法其他智能优化算法的收敛性证明仅证明算法能全局收敛到某一点,但这一点是否是全局最优点没有判定。全局收敛和收敛到全局最优解是两回事。在一般的智能优化算法中,都采用“贪