资源描述:
《《自动控制原理》(卢京潮主编)课后习题答案.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章线性系统的频域分析与校正习题与解答5-1试求题5-75图(a)、(b)网络的频率特性。CR1R2R1urucurR2ucC(a)(b)图5-75R-C网络R2K1R1R2Uc(s)R2K1(1s1)解(a)依图:1R1CUr(s)1T1s1R1R1R2CRsCT12RR112R1sCUc(j)R2jR1R2CK1(1j1)Ga(j)Ur(j)R1R2jR1R2C1jT11U(s)R2s1RC(b)依图:csC222Ur(s)1T2s1T2(R1R2)CR1R2sCUc(j)1jR2C1j2Gb(j)Ur(j)1j(R1R2)C1jT25-2某系统结构图如题5-76图所示,试根据
2、频率特性的物理意义,求下列输入信号作用时,系统的稳态输出c(t)和稳态误差e(t)ss(1)r(t)sin2t(2)r(t)sin(t30)2cos(2t45)1解系统闭环传递函数为:(s)图5-76系统结构图s277/377712频率特性:(j)j22j2441幅频特性:(j)24相频特性:()arctan()21s1系统误差传递函数:e(s),1G(s)s221则e(j),e(j)arctanarctan()242(1)当r(t)sin2t时,2,rm=112则(j)0.35,(j2)arctan()452825e(j)0.79,282e(j2)arctan18.46cr(j2)
3、sin(2t)0.35sin(2t45)ssmer(j2)sin(2t)0.79sin(2t18.4)ssmee时:11,rm11(2)当r(t)sin(t30)2cos(2t45)22,rm2251(j1)0.45(j1)arctan()26.552101e(j1)0.63e(j1)arctan()18.453c(t)r(j1)sin[t30(j1)]r(j2)cos[2t45(j2)]smm0.4sin(t3.4)0.7cos(2t90)e(t)r(j1)sin[t30(j1)]r(j2)cos[2t45(j2)]smeemee0.63sin(t48.4)1.58cos(2t26
4、.6)5-3若系统单位阶跃响应4t9th(t)11.8e0.8e(t0)试求系统频率特性。78/377811.80.8361解C(s),R(s)ss4s9s(s4)(s9)sC(s)36则(s)R(s)(s4)(s9)36频率特性为(j)(j4)(j9)5-4绘制下列传递函数的幅相曲线:(1)G(s)K/s2(2)G(s)K/s3(3)G(s)K/sKKj()2解(1)G(j)ej0,G(j0),G(j)0()2幅频特性如图解5-4(a)。KKj()(2)G(j)e22(j)0,G(j0),G(j)0()幅频特性如图解5-4(b)。3KKj()()()23Gje图解5-433(j)0
5、,G(j0),G(j)03()2幅频特性如图解5-4(c)。5-5已知系统开环传递函数10G(s)H(s)2s(2s1)(s0.5s1)试分别计算0.5和2时开环频率特性的幅值A()和相角()。10解G(j)H(j)2j(1j2)((1j0.5)79/377910A()22221(2)(1)(0.5)0.5()90arctan2arctan21A(0.5)17.8885A(2)0.3835计算可得(0.5)153.435(2)327.535-6试绘制下列传递函数的幅相曲线。5(1)G(s)(2s1)(8s1)10(1s)(2)G(s)2s5解(1)G(j)222(116)(10)11
6、110G(j)tg2tg8tg2116取ω为不同值进行计算并描点画图,可以作出准确图形0三个特殊点:①ω=0时,G(j)5,G(j)0②ω=0.25时,G(j)2,G(j)900③ω=∞时,G(j)0,G(j)180幅相特性曲线如图解5-6(1)所示。8x10410.830.620.410.200-0.2-1-0.4-2-0.6-3-0.8-4-1-1012345-9-8-7-6-5-4-3-2-10RealAxisRealAxis14x10图解5-6(1)Nyquist图图解5-6(2)Nyquist图2101(2)G(j)210G(j)tg1800两个特殊点:①ω=0时,G(j)
7、,G(j)18080/37800②ω=∞时,G(j)0,G(j)90幅相特性曲线如图解5-6(2)所示。5-7已知系统开环传递函数K(T2s1)G(s);K,T1,T20s(T1s1)当1时,G(j)180,G(j)0.5;当输入为单位速度信号时,系统的稳态误差1。试写出系统开环频率特性表达式G(j)。K(T2s1)解G(s)s(T1s1)K(T2s1)先绘制G0(s)的幅相曲线,然后顺时针转180°即可得到G(j)幅相曲线s(T1s1)。G0(s)的零极