确界原理的证明.docx

确界原理的证明.docx

ID:59605775

大小:42.97 KB

页数:4页

时间:2020-11-14

确界原理的证明.docx_第1页
确界原理的证明.docx_第2页
确界原理的证明.docx_第3页
确界原理的证明.docx_第4页
资源描述:

《确界原理的证明.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、页眉§2数集.确界原理(一)教学内容:实数的区间与邻域;集合的上、下界,上确界和下确界;确界原理难点:上、下确界定义的理解、数集确界的证明二)教学目的:1)正确使用区间和邻域概念,掌握集合的有界性的证明;2)初步理解上下确界的定义及确界原理的实质。(三)基本要求:1)掌握实数的区间与邻域概念;分清最大值与上确界的联系与区别;结合具体集合,能指出其确界;2)能用定义证明集合A的上确界为.即:xA有x,且0,x0A,使得x0.(三)教学建议:(1)此节重点是确界概念和确界原理.不可强行要求一步到位,对多数学生可只布置证明具体集合的确界的习题.(2)此节难点亦是确界概念和确

2、界原理.对较好学生可布置证明抽象集合的确界的习题.一区间与邻域:区间邻域设a与是两个实数,且0,称点集E{x

3、

4、xa

5、}为点a的邻域,记作U(a)aaax.称点集U(a){x

6、axa}{x

7、axa}为点a的去心邻域记作U0(a)aaax1/4页眉a的右邻域U(a){x

8、axa}a的右空心邻域U0(){x

9、axa}aa的左邻域U(a){x

10、axa}a的左空心邻域U0(a){x

11、axa}邻域U(){x

12、

13、x

14、M}邻域U(){x

15、xM}邻域U(){x

16、xM}二有界数集.确界原理:1.有界数集:定义(上、下有界,有界)设S为实数R上的一个数集,若存在一个数M(L),使得对一切

17、xS都有xM(xL),则称S为有上界(下界)的数集。若集合S既有上界又有下界,则称S为有界集。例如,区间[a,b]、(a,b)(a,b为有限数)、邻域等都是有界数集,集合Eyysinx,x(,)也是有界数集.无界数集:若对任意M0,存在xS,

18、x

19、M,则称S为无界集。例如,(,),(,0),(0,),有理数集等都是无界数集,1例1证明集合Eyy,x(0,1)是无界数集.x证明:对任意M0,存在1(0,1),y1xE,yM1MM1x由无界集定义,E为无界集。yM+1My1x1M1x2/4页眉确界,先给出确界的直观定义:若数集S有上界,则显然它有无穷多个上界,其中最

20、小的一个上界我们称它为数集S的上确界,记作supS;上确界M上界M1M2同样,有下界数集有无穷多个下界,称最大下界为该数集的下确界,记作infS。下确界m2m1m下界精确定义定义2设S是R中的一个数集,若数满足以下两条:(1)对一切xS有x,即是数集S的上界;(2)对任意0,存在x0S使得x0(即是S的最小上界),则称数为数集S的上确界。记作supSSx0定义3设S是R中的一个数集,若数满足以下两条:(3)对一切xS有x,即是数集S的下界;(4)对任意0,存在x0S使得x0(即是S的最大下界),Sx0则称数为数集S的下确界。记作infS例2(1)S1(1)n,则sup

21、S______,infS_______.n(2)Eyysinx,x(0,).则3/4页眉supE________,infE_________.注1由确界定,若数集S的上(下)确界存在,一定是唯一的,且infSsupS注2由上面例子可知,数集S的确界可以属于S,也可以不属于S。例3数集S有上确界,明supSmaxS明(略)定理1.1(确界原理).设S非空数集,若S有上界,S必有上确界;若S有下界,S必有下确界。明不妨S包含非数,S有上界存在自然数n,使得1)xS,xn1;2)存在a0S,a0n在[n,n1)内作10等分,分点分:n.1,n.2,,n.9存在自然数n1使得

22、1)xS,x11;2)存在a1S,a1n.n1n.n10⋯⋯⋯⋯1)xS,xn.n1n2nk1;2)存在akS,akn.n1n2nk10k按上述法无限作下去,得到数n.n1n2nk,可以supS。例4设A和B是非空数集.若xA和yB,都有xy,有supAinfB.证xA和yB,都有xy,y是A的上界,而supA是A的最小上界supAy.此式又supA是B的下界,supAinfB(B的最大下界)例5A和B非空数集,SAB.明:infSmininfA,infB.证xS,有xA或xB,由infA和infB分是A和B的下界,有xinfA或xinfB.xmininfA,infB

23、.即mininfA,infB是数集S的下界,infSmininfA,infB.又SA,S的下界就是A的下界,infS是S的下界,infS是A的下界,infSinfA;同理有infSinfB.于是有infSmininfA,infB.上,有infSmininfA,infB.4/4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。