欢迎来到天天文库
浏览记录
ID:59601617
大小:223.82 KB
页数:11页
时间:2020-11-15
《浙教版数学八年级上册 特殊三角形综合复习题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、学习目标1.掌握等腰三角形两个底角相等及“三线合一的性质”.能运用等腰三角形的性质解决有关的简单问题,发展基础性的逻辑推理能力2.经历用逻辑推理方法推导等腰三角形两个底角相等的性质体会实验归纳和逻辑推理这两种研究方法的联系与区别3.经历探索直角三角形全等的特殊判定方法的过程,体会演绎思想和化归思想4.经历勾股定理的探索过程,初步认识勾股定理的重要意义5.掌握直角三角形的性质定理和特殊直角三角形的性质定理,能运用直角三角形的有关性质解决简单的数学问题6.经历探索直角三角形性质的过程,体会研究图形性质的方法教学内容一、等腰三角形定义及其性质【知识梳理】1.等腰三角形的性质:(1)
2、等腰三角形的两个底角相等(简写成“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”);(3)等腰三角形是轴对称图形,它的对称轴是顶角平分线(底边上的中线、底边上的高)所在的直线.【例题精讲】例1.如图,有甲,乙两个三角形,请你用一条直线把每一个三角形分成两个等腰三角形,并标出每个三角形各角的度数.例2.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E
3、,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是__________.例3.探究题:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;直接写出结论,不用证明.②线段AD、BE之间的数量关系是.直接写出结论,不用证明.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.猜想:①∠AEB=°;②(CM、AE、BE的数量关系).
4、证明:。【巩固练习】1.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为__________.2.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x
5、所有可能的值.3.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A.2个B.3个C.4个D.5个二、直角三角形及全等的判定【知识梳理】1.定理2:直角三角形斜边上的中线等于斜边的一半.(1)推论1:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于
6、30°.【说明】“推论”是从某一个定理直接推出的定理.【例题精讲】例1.如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=900,且DE=EC.(1)求证:△ADE≌△BEC;(2)若AD=a,AE=b,DE=c,请用图1证明勾股定理:a2+b2=c2;(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF的长.例2.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿B
7、A方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)D、F两点间的距离等于______;(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;(4)连接PG,当PG∥AB时,直接写出t的值.【巩固练习】1.将一块三角板的
此文档下载收益归作者所有