欢迎来到天天文库
浏览记录
ID:59599763
大小:482.50 KB
页数:11页
时间:2020-11-14
《椭圆性质第二定义及焦半径讲解学习.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、椭圆性质第二定义及焦半径椭圆的第二定义:点M与一个定点距离和它到一条定直线距离的比是一个小于1的正常数,这个点的轨迹是椭圆。定点是椭圆的焦点。定直线叫椭圆的准线,常数e是椭圆的离心率。MdF2Hxyol2F1左焦点右焦点左准线右准线l1注意:1、定点必须在直线外。2、比值必须小于1。3、符合椭圆第二定义的动点轨迹肯定是椭圆,但它不一定具有标准方程形式。4、椭圆离心率的两种表示方法:准线方程为:或椭圆焦点在x轴椭圆焦点在y轴5、例2、两焦点坐标分别为(0,-2),(0,2)且经过点的椭圆的标准方程是什么?准
2、线方程是什么?该公式的记忆方法为“左加右减”,即在a与ex0之间,如果是左焦半径则用加号“+’’连接,如果是右焦半径用“-”号连接.焦半径公式①焦点在x轴上时:│PF1│=a+exo,│PF2│=a-exo;②焦点在y轴上时: │PF1│=a+eyo,│PF2│=a-eyo。课堂练习1、椭圆上一点到准线与到焦点(-2,0)的距离的比是()B2、椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是()C3.若一个椭圆的离心率e=1/2,准线方程是x=4,则椭圆的方程是____________4.解:
3、5、设中心在原点,焦点在x轴上的椭圆的长轴长是短轴长的4倍,且椭圆过点,求P点到左焦点和右准线的距离之比。此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢
此文档下载收益归作者所有