资源描述:
《矩阵分解技术应用到推荐系统培训讲学.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、矩阵分解技术应用到推荐系统1、PaperBackgroundFriday,September17,202121.YehudaKoren,YahooResearch2.RobertBellandChrisVolinsky,AT&TLabs-Research3.PaperpublishedbytheIEEEComputerSocietyinAugust20094.AuthorwonthegrandNetflixPrizeCompetitioninSeptember20092、IntroductionModernconsumersareinundatedwithchoices
2、.MoreretailorhavebecomeinterestedinRS,whichanalyzepatternsofuserinterestinproductstopridepersonalizedrecommendationsthatsuitauser'staste.NetflixandAmazon.comhavemadeRSasalientpartoftheirwebsites.Particularlyuserfulforentainmentproductssuchasmovies,music,andTVshows.3、RecommenderSystemStra
3、tegiesContentFilteringCollaborativeFiltering1.Neighborhoodmethodsuser-orienteditem-oriented2.LatentFatorModelFriday,September17,202143.1、ContentsFilteringCreateaprofileforeachuserorproducttocharacterizeitsnature.Needtogatherexternalinformation.Aknownsuccessfulrealizationofcontentfilter
4、ingistheMusicGenomeProject,whichisusedfortheInternetradioservicePandora.com.Friday,September17,202153.2、CollaborativeFilteringAnalyzerelationshipsbetweenusersandinterdep-enciesamongproductstoidentifynewuser-itemas-Socitions.Disadvantages:coldstartTwoprimaryareas:neighborhoodmethodsuser-o
5、rienteditem-orientedLatentfactormodelsFriday,September17,202163.2.1、NeighborhoodmethodsCenteredoncomputingtherelationshipsbetweenitemsorusers.Theitem-orientedapproachevaluatesauser’spreferenceforanitembasedonratingsof“neighboring”itemsbythesameuser.Theuser-orientedapproachidentifieslike-
6、mindeduserswhocancomplementeachother’sratings.Friday,September17,20217Example:3.2.2、LatentFactorModelsFindfeaturesthatdescribethecharacteristicsofratedobjects.Itemcharacteristicsanduserpreferencesaredescribedwithnumericalfactorvalues.Assumption:Ratingscanbeinferredfromamodelputtogetherfr
7、omasmallernumberofparameters.Friday,September17,202194、MatrixFactorizationMethodsCharacterizebothitemsandusersbyvectorsoffactorsinferredfromitemratingpatterns.RSrelyondifferenttypesofinputdata.Strength:incorporationofadditionalinformation,implicitfeedback.Implicitfeedback