欢迎来到天天文库
浏览记录
ID:59511676
大小:376.00 KB
页数:6页
时间:2020-11-04
《高中选修1-1数学文科试题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中选修1-1数学文科试题一.选择题(每小题5分,共60分)1.有以下四个命题:①若,则.②若有意义,则.③若,则.④若,则.则是真命题的序号为()A.①②B.①③C.②③D.③④2.“”是“”是的()w.w.w.k.s.5.u.c.o.mA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.若方程C:(是常数)则下列结论正确的是()A.,方程C表示椭圆w.w.w.k.s.5.u.c.o.mB.,方程C表示双曲线C.,方程C表示椭圆D.,方程C表示抛物线4.抛物线:的焦点坐标是()A.B.C.D.5.双曲线:的渐近线方程和离心率分别是()
2、AB.C.D.6.函数在点处的切线方程是()A.B.C.D.7.函数有极值的充要条件是()A.B.C.D.8.函数(的最大值是()A.B.-1C.0D.19.过点与抛物线有且只有一个交点的直线有()A.4条 B.3条 C.2条 D.1条10.函数,若的导函数在R上是增函数,则实数的取值范围是()A.B.C.D.11.双曲线4x2+ty2-4t=0的虚轴长等于()A.B.-2tC.D.412.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率的取值范围是()A.B.C.D.二.填空题(每小题5分,共20分)13.是过C:焦点的弦,且,则中点的横坐标
3、是_____.14.函数在时取得极值,则实数_______.15.已知一个动圆与圆C:相内切,且过点A(4,0),则这个动圆圆心的轨迹方程是_______________16.对于函数有以下说法:①是的极值点.②当时,在上是减函数.③的图像与处的切线必相交于另一点.④若且则有最小值是.其中说法正确的序号是_______________.三.解答题(17题10分,18---22题均12分,共70分)17.已知椭圆C:上一点到它的两个焦点(左),(右)的距离的和是6,(1)求椭圆C的离心率的值.(2)若轴,且在轴上的射影为点,求点的坐标.y18.如图:是=的导函数的简图,
4、它与轴的交点是(1,0)和(3,0)13(1)求的极小值点和单调减区间x0(2)求实数的值.19..双曲线C:右支上的弦过右焦点.(1)求弦的中点的轨迹方程(2)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率K的值.若不存在,则说明理由.20.设函数.在(1)求函数的单调区间.(2)若方程有且仅有三个实根,求实数的取值范围.21.已知在区间[0,1]上是增函数,在区间上是减函数,又(1)求的解析式.(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.高二数学文科试题参考答案一.ABBBD,CCDBA,CA二.4;-2;;②③三17.(1)---------
5、2分---------5分(2)-------10分18.(1)是极小值点-----3分是单调减区间-----6分(2)由图知,-------12分19.(1),()-------6分注:没有扣1分(2)假设存在,设,由已知得:---------①所以--------②联立①②得:无解所以这样的圆不存在.-----------------------12分20.(1)和是增区间;是减区间--------6分(2)由(1)知当时,取极大值;当时,取极小值;----------9分因为方程仅有三个实根.所以解得:------------------12分21.(1),由已
6、知,即解得,.--------------6分(2)令,即,,或.又在区间上恒成立,--------12分
此文档下载收益归作者所有