资源描述:
《倪俊人教版22.3实际问题与二次函数(3)课件讲课资料.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.3实际问题与二次函数(3)具有二次函数的图象抛物线的特征如图的抛物线形拱桥,当水面在时,拱桥顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?探究2:Xyxy00注意:在解决实际问题时,我们应建立简单方便的平面直角坐标系.抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●当时,所以,水面下降1m,水面的宽度为m.∴水面的宽度增加了m探究2:解:设这条抛物线表示的二次函数为由抛物线经过点(2,-2),可得所以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为抛物线形
2、拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(4,0)●(0,0)●∴水面的宽度增加了m(2,2)解:设这条抛物线表示的二次函数为由抛物线经过点(0,0),可得所以,这条抛物线的二次函数为:当时,所以,水面下降1m,水面的宽度为m.当水面下降1m时,水面的纵坐标为解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽
3、度增加了∴可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)返回用抛物线的知识解决生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案及时总结注意变量的取值范围有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。练习:例2:你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距
4、甲拿绳的手水平距离1米、2.5米处,绳甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高。1m2.5m4m1m甲乙丙丁oABCD解:由题意,设抛物线解析式为y=ax2+bx+1,把B(1,1.5),D(4,1)代入得:丁xyo把x=2.5代入得y=1.625∴C点的坐标为(2.5,1.625)∴丁的身高是1.625米1m2.5m4m1m甲乙丙(0,1)(4,1)(1,1.5)ABCD例题:如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在
5、离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。ABCD0.71.62.20.4EFOxyABCD0.71.62.20.4EF解:如图,所以,绳子最低点到地面的距离为0.2米.Oxy以CD所在的直线为X轴,CD的中垂线为Y轴建立直角坐标系,则B(0.8,2.2),F(-0.4,0.7)设y=ax+k,从而有0.64a+k=2.20.16a+k=0.72解得:a=K=0.2258所以,y=x+0.2顶点E(0,0.2)2258解二次函数应用题的一般步骤:1.审题,弄清已知和未知。2.将实际问题转化为数学问题。建立适当的平面直角坐标系小结反思3.
6、根据题意找出点的坐标,求出抛物线解析式。分析图象(并注意变量的取值范围),解决实际问题。4.返回实际背景检验。