线性代数网络教学阶段测试五.doc

线性代数网络教学阶段测试五.doc

ID:59465668

大小:739.00 KB

页数:44页

时间:2020-11-02

线性代数网络教学阶段测试五.doc_第1页
线性代数网络教学阶段测试五.doc_第2页
线性代数网络教学阶段测试五.doc_第3页
线性代数网络教学阶段测试五.doc_第4页
线性代数网络教学阶段测试五.doc_第5页
资源描述:

《线性代数网络教学阶段测试五.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、单项选择题(共20题)1.下列矩阵中不是二次型的矩阵的是( )【正确答案】C【您的答案】A  【答案解析】2.n元实二次型正定的充分必要条件是( )A.该二次型的秩=nB.该二次型的负惯性指数=nC.该二次型的正惯性指数=它的秩D.该二次型的正惯性指数=n【正确答案】D【您的答案】A  【答案解析】二次型正定的充分必要条件是二次型的正惯性指数=n3.下列条件不能保证n阶实对称阵A为正定的是( )A.A-1正定B.A没有负的特征值C.A的正惯性指数等于nD.A合同于单位阵【正确答案】B【您的答案】A  【答案解析】A-1正定表明存

2、在可逆矩阵C使CTA-1C=In,两边求逆得到C-1A(CT)-1=C-1A(C-1)T=In即A合同于In,A正定,因此不应选A。C是A正定的定义,也不是正确的选择。D表明A的正惯性指数等于n,故A是正定阵,于是只能B。事实上,一个矩阵没有负的特征值,但可能有零特征值,而正定阵的特征值必须全是正数。4.矩阵的特征值为( )A.1,1   B.2,2   C.1,2   D.0,0【正确答案】A【您的答案】A  【答案正确】【答案解析】得到特征值是1,1。5.已知相似,则有( )【正确答案】D【您的答案】A  【答案解析】6.设矩阵

3、相似.则下列结论错误的是( )【正确答案】B【您的答案】A  【答案解析】根据相似矩阵的性质判断B错误.7.设A为3阶矩阵,且已知,则A必有一个特征值为( )【正确答案】B【您的答案】A  【答案解析】8.已知3阶矩阵A的特征值为1,2,3,则

4、A-4E

5、=( )A.2       B.-6C.6      D.24【正确答案】B【您的答案】A  【答案解析】∵3阶矩阵A的特征值为1,2,3∴

6、λE-A

7、展开式含有三个因子乘积:(λ-1)(λ-2)(λ-3)∵

8、λE-A

9、展开式λ3项系数为1∴

10、λE-A

11、=(λ-1)(λ-2)(λ-

12、3)∵A为3阶矩阵∴

13、A-λE

14、=(-1)3

15、λE-A

16、=(-1)3(λ-1)(λ-2)(λ-3)将4代入上式得到-6。9.设( )A.线性无关B.线性相关C.对应分量成比例D.可能有零向量【正确答案】A【您的答案】A  【答案正确】【答案解析】A属于不同特征值的特征向量线性无关.10.A为三阶矩阵,为它的三个特征值.其对应的特征向量为.设,则下列等式错误的是( )【正确答案】C【您的答案】A  【答案解析】11.设A,B为正定阵,则( )A.AB,A+B都正定B.AB正定,A+B非正定C.AB非正定,A+B正定D.AB不一定正定,

17、A+B正定【正确答案】D【您的答案】A  【答案解析】∵A、B正定∴对任何元素不全为零的向量X永远有XTAX>0;同时XTBX>0。因此A+B正定,AB不一定正定,甚至AB可能不是对称阵。12.设A是n阶矩阵,C是n阶正交阵,且B=CTAC,则下述结论( )不成立。A.A与B相似B.A与B等价C.A与B有相同的特征值D.A与B有相同的特征向量【正确答案】D【您的答案】A  【答案解析】∵C是正交阵,所以CT=C-1,B=C-1AC,因此A与B相似,A对。C是正交阵

18、C

19、不等于0,CTAC相当对A实行若干次初等行变换和初等列变换,A与

20、B等价,B对。两个相似矩阵A、B有相同的特征值,C对。(λE-A)X=0,(λE-B)X=0是两个不同的齐次线性方程组,非零解是特征向量,一般情况这两个方程的非零解常常不同,所以只有D不对,选D。13.已知A是一个三阶实对称正定的矩阵,那么A的特征值可能是( )【正确答案】D【您的答案】A  【答案解析】因为实对称矩阵的特征值都是实数,故A,C都不正确;又因为正定矩阵的特征值均为正数,故B也不正确;应用排除法,知答案为D.14.下列命题错误的是( )A.属于不同特征值的特征向量必线性无关B.属于同一特征值的特征向量必线性相关C.相似

21、矩阵必有相同的特征值D.特征值相同的矩阵未必相似【正确答案】B【您的答案】A  【答案解析】属于同一特征值的特征向量未必线性相关,比如单位阵的特征值全是1,但它有n个线性无关的特征向量,因此应选择B。15.二次型f=xTAx经过满秩线性变换x=Py可化为二次型yTBy,则矩阵A与B( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同【正确答案】A【您的答案】A  【答案正确】【答案解析】f=xTAx=(Py)TA(Py)=yT(PTAP)y=yTBy,即B=PTAP,所以矩阵A与B一定合同。只有当P是正交矩阵时,由于P

22、T=P-1,所以A与B即相似又合同。16.二次型的矩阵为( )【正确答案】C【您的答案】A  【答案解析】17.设【正确答案】C【您的答案】A  【答案解析】主对角线元素对应x1,x2,x3平方项系数:1,1,1。a13和a31系数的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。