欢迎来到天天文库
浏览记录
ID:59464126
大小:943.50 KB
页数:7页
时间:2020-11-02
《第三讲反函数和指对数函数.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3讲指数与对数函数一、指数与对数运算:1.指数①规定:1)N*),2),n个3)Q,4)、N*且②性质:1)、Q),2)、Q),3)Q)(注)上述性质对r、R均适用.2.对数①定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数.1)以10为底的对数称常用对数,记作,2)以无理数为底的对数称自然对数,记作②基本性质:1)真数N为正数(负数和零无对数),2),3),4)对数恒等式:③运算性质:如果则1);2);3)R).④换底公式:1),2)(二)学习要点:1.指数式与对数式的互化:2.要
2、熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验.【例1】解答下述问题:例1.计算:(1);(2);(3).解:(1)原式.(2)原式.(3)原式.(4)已知:值(用表示).[解析].[评析]这是一组很基本的指数、对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.【例2】
3、解答下述问题:(1)若,则,,从小到大依次为;(2)若,且,,都是正数,则,,从小到大依次为;(3)设,且(,),则与的大小关系是()()()()()解:(1)由得,故.(2)令,则,,,,∴,∴;同理可得:,∴,∴.(3)取,知选().例3.已知,且,求的值.解:由得:,即,∴;同理可得,∴由得,∴,∴,∵,∴.例4.设,,且,求的最小值.解:令,∵,,∴.由得,∴,∴,∵,∴,即,∴,∴,∵,∴当时,.二、指数函数与对数函数1.指数函数:①定义:函数称指数函数,1)函数的定义域为R,2)函数的值域为,3)当时函数为减
4、函数,当时函数为增函数.②函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限,2)指数函数都以轴为渐近线(当时,图象向左无限接近轴,当时,图象向右无限接近轴),3)对于相同的,函数的图象关于轴对称.①,②,③①,②,③,③函数值的变化特征:2.对数函数:①定义:函数称对数函数,1)函数的定义域为,2)函数的值域为R,3)当时函数为减函数,当时函数为增函数,4)对数函数与指数函数互为反函数.②1)对数函数的图象都经过点(0,1),且图象都在第一、四象限,2)对数函数都以轴为渐近线(当时,图象向上无限接近
5、轴;当时,图象向下无限接近轴).①,②,③.①,②,③.4)对于相同的,函数的图象关于轴对称.③函数值的变化特征:(二)学习要点:1.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识.2.指数、对数函数值的变化特点(上面知识结构表中的12个小点)是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析.3.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问
6、题的最基本的分类方案是以“底”大于1或小于1分类.4.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力.【例1】已知是奇函数(其中,(1)求的值;(2)讨论的单调性;(3)求的反函数;(4)当定义域区间为时,的值域为,求的值.[解析](1)对定义域内的任意恒成立,,当不是奇函数,,(2)定义域为,求导得,①当时,在上都是减函数;②当时,上都是增函数;(另解)设,任取,,,结论同上;(3)
7、,(4)上为减函数,命题等价于,即,解得.[评析]例1的各个小题概括了指数、对数函数的各种常见的基本问题,熟练掌握这些基本问题的解答程序及方法是很重要的能力训练,要认真总结经验.【例2】对于函数,解答下述问题:(1)若函数的定义域为R,求实数a的取值范围;(2)若函数的值域为R,求实数a的取值范围;(3)若函数在内有意义,求实数a的取值范围;(4)若函数的定义域为,求实数a的值;(5)若函数的值域为,求实数a的值;(6)若函数在内为增函数,求实数a的取值范围.[解答]记,(1)恒成立,,的取值范围是;(2)这是一个较难理
8、解的问题。从“的值域为R”,这点思考,“的值域为R”等价于“能取遍的一切值”,或理解为“的值域包含了区间”的值域为∴命题等价于,∴a的取值范围是;(3)应注意“在内有意义”与定义域的概念是不同的,命题等价于“恒成立”,应按的对称轴分类,,的取值范围是;(4)由定义域的概念知,命题等价于不等式的解集为,是方程的两根,即
此文档下载收益归作者所有