欢迎来到天天文库
浏览记录
ID:59451859
大小:419.69 KB
页数:7页
时间:2020-11-01
《高中数学圆锥曲线知识点总结材料.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为:;②定义二:在平面到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。用集合表示为:;(2)标准方程和性质(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表
2、示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。用集合表示为:(2)标准方程和性质:4、抛物线:(1)轨迹定义:在平面到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、1、平面解析几何的知识结构:
3、2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。4、利用焦半径公式计算焦点弦长:若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点的坐标分别为,则弦长这里体现了解析几何“设而不求”的解题思想。5、若过椭圆左(或右)
4、焦点的焦点弦为AB,则;6、结合下图熟记双曲线的:“四点八线,一个三角形”,即:四点:顶点和焦点;八线:实轴、虚轴、准线、渐进线、焦点弦、垂线PQ。三角形:焦点三角形。7、双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔。8、双曲线的焦点到渐近线的距离为b。9、共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。区别:三常数a、b、c中a、b不同(互换)c相同,它们共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一
5、圆上。确定双曲线的共轭双曲线的方法:将1变为-1。10、过双曲线外一点P(x,y)的直线与双曲线只有一个公共点的情况如下:(1)P点在两条渐近线之间且不含双曲线的区域时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;(2)P点在两条渐近线之间且包含双曲线的区域时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;(3)P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;(4)P为原点时不存在这样的直线;11、结合图形熟记抛物线:“两点两线,一个直角梯形”,即:两点:顶点和焦点;两线:准线、
6、焦点弦;梯形:直角梯形ABCD。12、对于抛物线上的点的坐标可设为,以简化计算;13、抛物线的焦点弦(过焦点的弦)为AB,且,则有如下结论:14、过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线;15、处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法:即设为曲线上不同的两点,是的中点,则可得到弦中点与两点间关系:16、当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,即把直线方程代入曲线方程,消元后,用韦达定理求相关参数(即设而不求);二是点差法,即设出交点坐标,然后把交点坐标代入曲线方程,两式相减后,再
7、求相关参数。在利用点差法时,必须检验条件△>0是否成立。17、曲线与方程:(1)轨迹法求曲线方程的程序:①建立适当的坐标系;②设曲线上任一点(动点)M的坐标为(x,y);③列出符合条件p(M)的方程f(x,y)=0;④化简方程f(x,y)=0为最简形式;⑤证明化简后的方程的解为坐标的点都在曲线上;(2)曲线的交点:由方程组确定,方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点。
此文档下载收益归作者所有