欢迎来到天天文库
浏览记录
ID:59446240
大小:58.68 KB
页数:6页
时间:2020-09-03
《微分方程练习题基础篇答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.常微分方程基础练习题答案求下列方程的通解dydyx2xy分离变量Ce2,C为任意常数1.xdx,ydxy2.xydx1x2dy0dyxdx,yCe1x2,C任意常数分离变量1x2y3.xyylnydy1dx,yCex0分离变量xylny4.(xy2x)dx2yydyxdx,(1y2)(12)C(xy)dy0分离变量y22x11x5.dy(2xy5)2令u2xy5则du2dydxdxdx,du2dx,1arctanuxC1u2226.dyxydy1yy,dyxdu,代入得1u21x,令uududx,原方程变为dxxydx1yxdxdx1
2、u2xxyyy2arctanuulnxC,ux回代得通解2arctanxlnxxC方程变形为dyyy2y,代入得dudx7.xyyx2y2010,令udxxxx1u2xlnxC,uyyyarctanux回代得通解arctanxlnxxC8.xdyylny,方程变形为dyylny,令uy,dudx,ueCx1,yxeCx1u(lnu1)xdxxdxxxx9.dy2xy4x,一阶线性公式法y2xdx4xe2xdxC)Cex22e(dxdx10.dyy2x2,一阶线性公式法y12x2e1dxC)x3Cxex(xdxdxdxx11.(x21)y2
3、xy4x22x4x2一阶线性公式法y1(4x3C),方程变形为yx2yx21x2311'..12.(y26x)dy2y0,方程变形为dx3x1y一阶线性公式法y1y2Cy3dxdyy2213.y3xyxy2,方程变形为1dy3x1x伯努利方程,令zy1,dzy2dy代入方程y2dxydxdx得dz3xzx一阶线性公式法再将z回代得13x2Ce2dxy1314.dy1y1(12x)y4,方程变形为1dy111(12x)伯努利方程,令dx33y4dx3y33zy3,dz3y4dy代入方程得dzz2x1,一阶线性公式法再将z回代得dxdxdx
4、1Cex2x1y315.y5y6y0,特征方程为r25r60,特征根为r12,r23,通解yCe2xCe3x1216.16y24y9y0,特征方程为16r224r90,特征根为r1,23,通解43xy(C1C2x)e417.yy0,特征方程为r2r0,特征根为r10,r21,通解yC1C2ex18.y4y5y0,特征方程为r24r50,特征根为r12i,r22i,通解ye2x(C1cosxC2sinx)19.(x2y)dxxdy0,全微分方程x2dx(ydxxdy)0,dx3d(xy)0,通解x3xyC3320.(x3y)dx(xy)dy
5、0,全微分方程x3dx(ydxxdy)ydy0,dx4d(xy)dy20,42通解x4xyy2C42'..21.(x2y2)dx(2xyy)dy0全微分方程x2dx(y2dx2xydy)ydy0,dx3d(xy2)dy20,通解x3xy2y2C323222.(xcosycosx)yysinxsiny0,全微分方程(xcosydysinydx)(cosxdyysinxdx)0,d(xsiny)d(ycosx)0,通解xsinyycosxC23.(3x2y)dx(2x2yx)dy22x2ydyydxxdy0,积分因子1,方程变C,3xdxx2
6、为3dx2ydyydxxdy0,d3xdy2dy0,通解3xy2yCx2xx24.xdxydy(x2y2)dx,积分因子1,方程变为xdxydydx0,x2y2x2y2d[1ln(x2y2)]dx0通解1ln(x2y2)xC2225.(x2y2y)dxxdy0,(x2y2)dxydxxdy0,积分因子x21y2,方程变为dxydxxdy0,dxdarctanx0,通解xarctanxCx2y2yy26.ye3xsinx,可降阶y(n)f(x)型,逐次积分得通解y1e3xsinxC1xC2927.y1y2,可降阶令p(x)y,原方程化为p1
7、p2可分离变量型,得yptan(xC1),积分得通解ylncos(xC1)C228.yyx,可降阶yf(x,y)型,令p(x)y,原方程化为ppx,一阶线性非齐次公式法得ypCexx1,积分得通解yC1ex1x2xC212'.29.y30.y31.y32.y33.y.y3y,可降阶yf(y,y)型,令p(y)y,ypdp,原方程化为pdpp3pdydy即p[dp(1p2)]0,p0是方程的一个解,由dp(1p2)0得dydyarctanpyC1即yptan(yC1),通解为yxC2C1arcsine2yxf(x)exPm(x)型,1是特
8、征方程2210的y4xe,二阶常系数非齐次重根,对应齐次方程的通解为Y(C1C2x)ex,设特解为y*x2(axb)ex,代入方程得(6ax2)x4xa2,b0,故原方程的特解为y*2x3ex
此文档下载收益归作者所有